" 北京京能清潔能源電力股份有限公司

(Incorporated in the People's Republic of China with limited liability)

* Thi⊠dn?or__en_i⊠n?igia, e aedi Chie⊠e ad hi⊠E g,i⊠h e ⊠n?i⊠ n?fn?__en, adn?jedi he ⊠haehn?de ⊠'ge e a __eeig n?f he Cn?__na adi⊠fn? efee cen? .I ca⊠en?fa i cn?⊠⊠qe c be ⊠gee he Chie⊠e e ⊠n? ad he E g,i⊠h .e ⊠n?, he Chie⊠e e ⊠n? ⊠ha, e.ai.

Ge e a	1
O, e a iłł a Objec i. e⊠a d Scłł e	3
Sha e Regi e ed Ca, i a a d T a Me If Sha e	4
I c ea 🛛 e, Redi c i 🕅 a d Re, i cha 🖾 🕅 f Sha e 🖾	8
Fiacia A 🖾 🎗 a ce f 🕅 Pi cha 🗷 🕅 f C 🕅 _ ma Shae 🛛	11
Sha e Ce ifica e a d Regi e Mf Sha eh de a	12
Righ 🛛 a d Ob iga i 🕅 🖾 🕅 Sha eh 🕅 de 🖾	16
Ge e a Mee i g	21
Ge e a P Ø i⊠Ø ⊠Ø Ge e a Mee i g	21
P ₺7,₺₺⊠ g a d C₺7 , e i g ₺7f Ge e a Mee i g	23
P Ø, Ø⊠a ⊠a d NØ, ice⊠ Øf Ge e a Mee, i g	25
CN7 e i g Ge e a Mee i g	27
V ¹ 7 i g a d Re⊠7, in ⊠a Ge e a Mee i g⊠	32
S, ecia, P \mathcal{R} ced e \mathbb{Z} f \mathcal{R} V \mathcal{R} i g a, C, a \mathbb{Z} Mee i g	34
Pa Chiee	37
B∦7a d ∜7f Di ec ∦7 ⊠	38
Di ec n 🛛	38
I de, e de、Di ec,招区	40
B∦7a d ∦7f Di ec ∦7 ⊠	41
Sec e a M he BMa d Mf Di ec M	47
Ge e a Ma age	49
B∜7a d ∜7f S ₁ , e. i⊠77⊠	51
Sr, e. i⊠7⊠	51
B 17/a d 17/f 🛛 , e , i 🖾 7 🖾	52
	O, e a, iN a, Objec, i. eMa d Sch, e Sha eMa RegiMa e el Ca, i, a, a d T a Ma iN Sha eMa I c ea Ma age Fi a cia, AMAMA a ce fri P, cha Ma iN Sha eMa Sha e Ce, iffica, eMa d RegiMa iN Sha ehri de Ma Righ, Ma d Ob, iga, iN Min Sha ehri de Ma Ge e a, Mee, i g Ge e a, Mee, i g Ge e a, P iN iMa iNN Ge e a, Mee, i g P iN fiMa, Ma d Nin jeeMa Ge e a, Mee, i g Cif. e i g Ge e a, Mee, i g Viñ i g a d Refair, in Ma, Ge e a, Mee, i g S, ecia, P ficed e Min Viñ i g a, C, a Ma Maee, i g Di ec, iN Ma I de, e de i Di ec, iN Ma Sec e, a iN he Bria d fit Di ec, iN Ma Ge e a, Ma age Bria d fit S, e. iMN Ma

Cha, e 15	Q a ifica in \square a d Ob iga in \square in the Cin_ma ' \square Di ec \square \square Si, e. i \square \square \square a d O he Se in Ma age_en	54
Cha, e 16	Fi a cia Acc ²⁷ , i g S $[e_{-\mathcal{L}} a d Di]$ ib if $\mathcal{H} P \mathcal{H} f i]$	61
Cha, e 17	A, Mi, en, Mf a Acc/II, i g Fi	64
Cha _k e 18	Me ge , Di $i \boxtimes \mathcal{H}$, Di $\boxtimes \mathcal{H}$, $i \mathcal{H}$ a d Li i ida $i \mathcal{H}$	67
Sec in 1	Me ge a d Di, i	67
Sec in 2	$Di \mathbb{R} [\eta]_{1}$ $i \mathbb{R}$ a d Li i ida $i \mathbb{R}$	68
Cha, e 19	$A_{e_1} d_{e_2} = \sqrt{2} A_{e_1} e_2 \sqrt{2} A_{e_2} A_{e_2} = \sqrt{2} A_{e_1} A_{e_2} A_{e_3} A_{e_4} A_{e_5} A_{e_6} A_{e_$	70
Cha, e 20	NM ice	71
Cha, e 21		73
Cha, e 22	$S_{1,1}, e_{-}, e_{1,1}a = A_{1,1}ic_{1}e \Delta$	73

Từ ada, \mathcal{N} , he e, i e_e, \mathcal{M} h de e, \mathcal{N}_{-e} , \mathcal{M} \mathcal{M} cia \mathcal{M}_{-e} , \mathcal{M} e e ch \mathcal{M}_{-e} , \mathcal{M} ada, \mathcal{M} he e, \mathcal{M} di e e \mathcal{M} \mathcal{M} f Beiji g Ji g e g C ea E e g C \mathcal{M} , Li_ined (he -) a d i \mathcal{M} a e h de \mathcal{M} de \mathcal{M} a d \mathcal{M} e g a e \mathcal{M} ga i a \mathcal{M} a d ac \mathcal{M} f he C \mathcal{M}_{-e} , a , hi \mathcal{M} A ic e \mathcal{M} f A \mathcal{M} f cia \mathcal{M} i \mathcal{M} f \mathcal{M} e d A \mathcal{M} e \mathcal{M} a d \mathcal{M} e g a e \mathcal{M} ga i a \mathcal{M} f P RC (he C \mathcal{M}_{-e} , a La \mathcal{M}), he La \mathcal{M} \mathcal{M} E e i \mathcal{M} S a e \mathcal{M} ed A \mathcal{M} e \mathcal{M} f he PRC, he C \mathcal{M} \mathcal{M} i \mathcal{M} \mathcal{M} f he C \mathcal{M}_{-e} , a La \mathcal{M}), he La \mathcal{M} \mathcal{M} F PRC (he Seo i e \mathcal{M} f he PRC, he C \mathcal{M} \mathcal{M} i \mathcal{M} \mathcal{M} f he C \mathcal{M}_{-e} , a La \mathcal{M}), he A seo i e \mathcal{M} f PRC (he Seo i e \mathcal{M} f he Secia P \mathcal{M} i \mathcal{M} \mathcal{M} \mathcal{M} f S a e C \mathcal{M} ci \mathcal{M} O e e \mathcal{M} ad \mathcal{M} f A ad \mathcal{M} f a d \mathcal{M} f f he C \mathcal{M}_{-e} , a ie \mathcal{M} f be Li \mathcal{M} d he P RC, he G ide i e \mathcal{M} f \mathcal{M} A ic e \mathcal{M} f A dad \mathcal{M} f C hi e \mathcal{M} f Li_e a d \mathcal{M} f he R e \mathcal{M} de \mathcal{M} e i g he Li \mathcal{M} i \mathcal{M} f Seo i e \mathcal{M} f The S \mathcal{M} c ch a ge \mathcal{M} f A g \mathcal{M} g C i e d \mathcal{M} f d \mathcal{M} he e e a \mathcal{M} f i \mathcal{M} f \mathcal{M}

The C_{1}^{i} $ra = i \boxtimes a j_{1}^{i}$, $\boxtimes M_{1}^{i}$ c_{1}^{i} $a = d \cap i = c_{1}^{i}$, M_{1}^{i} $a = d i = a c_{1}^{i}$, M_{2}^{i} $a = c_{2}^{i}$, M_{2}^{i} $a = c_{2}^{i}$, M_{2}^{i} ,

The egilde ed Chi edle a s_1 of the CM r_a in the CM r_a in the E g in

Add e **XX** if he Ci_{ra} : Rim_{ra} :

The chai $_a_h$ $\[mathbb{M}\]$ he b $\[mathbb{M}\]$ a d $\[mathbb{M}\]$ die $\[mathbb{M}\]$ he $\[mathbb{C}\[mathbb{M}\]$ _mathbb{M}\] a ' $\[mathbb{M}\]$ ega e, e $\[mathbb{M}\]$ e, $\[mathbb{a}\]$ e, e $\[mathbb{M}\]$ e, e $\[m$

The Chi_ma i a e e a jin a k.

A. he $Ci_{1}a^{\alpha}$ is a state of the circle of the circl

A, i n ed h i n gh a e i n, i n a, he ge e a __ee, i g a d b e, e. a, a hi n i i e i n i

 $F = M_{a} he effecti e date = M f hi = A tic e = M f A = A tic e = A tic e$

Wi hat jej dice a la fi i and a fif A ice 243, a d accarding a hi A ice a fif A and a cia if a la chara cha

Find the probability of the above of the state of the st

The e ____ \boxtimes is iffice \boxtimes - i hi \boxtimes A ic \bigotimes iff A \boxtimes iff A \boxtimes ifficial iffice \boxtimes iff A \boxtimes iffice \square if \square iffice \square iffice \square if \square if if if is a constant if is a constant if is a constant if if is a constant if if is a constant if is a constant if is a constant if if is a constant if is a constant if if is a constant if is a constant if if is a constant if is constant if is a constant if is a constant if is a const

0

I acci7 da ce \boxtimes i, h, he, i7 i \boxtimes i \boxtimes i \rtimes if he Ci7 \boxtimes i, ii7 if he Ci7 \square cm i \boxtimes Pa, if Chia, he ci7 \square cm i \boxtimes Pa, if Chia; he if ga i a ii7 \boxtimes if he Ci7 \square cm i \boxtimes Pa, if Chia; he if ga i a ii7 \boxtimes if he Pa, (he Pa, O ga i a ii7) \boxtimes ha, a he cif e eade \boxtimes hi, if e, hi di g cif ec di ec ii7 \boxtimes en agi g if e a, \boxtimes , a ii7 \boxtimes a de \boxtimes i g he i_cre_ei, a ii7 \boxtimes if he gif e $_$ con i \boxtimes , if i \boxtimes is a de \boxtimes i g he i_cre_ei, a ii7 \boxtimes if he gif e $_$ con i \boxtimes , if i \boxtimes i matrix i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes i g he i_cree i a ii7 \boxtimes if he gif e $_$ con i \boxtimes , if i \boxtimes i matrix i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes i g he i_cree i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes i g he i_cree i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes i g he i_cree i a ii7 \boxtimes if he Pa, i a ii7 \boxtimes i g he ac i i i i a ii7 i a ii7 he Pa, i a ii7 \boxtimes i a ii7 i

The $cN_{ra} = \Delta ha_{c}$, N_{r} ide he ece $\Delta \Delta a$ cN_{r} di $iN_{r} = \Delta fN_{r}$ he activitie Δca ied N_{r} by he Pa O gai a iN_{r} . The i Δi_{1} , iN_{ra} a d Δa affing N_{r} he Pa O gai a iN_{ra} Δha_{c} be i c, ded i N_{ra} he CN_{ra} $\Delta ha_{ra} = e_{1}$. N_{ra} gai a $iN_{ra} = \Delta \Delta a$ affing N_{ra} he ΔN_{ra} he Pa O gai a iN_{ra} Δha_{c} be i c, ded i N_{ra} he CN_{ra} Δha_{c} he CN_{ra} is ded i N_{ra} he CN_{ra} is ded i N_{ra} he CN_{ra} is ded if N_{ra} he he A age in the constant of the N_{ra} is ded in Δha_{c} be diable Δha_{c} be diable Δha_{c} he ha_{ra} and Δha_{c} he ha_{ra} is ded for N_{ra} is ded for N_{ra} is ded for N_{ra} is ded for N_{ra} in the ha_{ra} and ha_{c} he ha_{ra} is ded for N_{ra} is ded for N_{ra} .

I cN_{r} ia $ce \boxtimes ih$ he $CN \boxtimes i_{1}$ in Nf PRC a dN he e.e. a $N i \boxtimes N \boxtimes he CN_{r}$ a $\boxtimes ha$ add de_{r} are a constant A and A a

The $CM_{ch}a = a_h i \in \mathbb{N}$ is M here, $e \in \mathbb{N} \otimes \mathbb{N}$ HMZ e.e., $i \otimes A_{ch} \otimes M$, $becM_{ch}a = a_h a_h c_h i \in M$, $ih \in M$, $ha \otimes A_{ch}$, $bea = jM_{ch} (iabi, i, iabi, i,$

The \overline{N} e a \overline{M} a \overline{M} bjec i e \overline{M} if the \overline{CM}_{pa} a e: \overline{M} i interided in \overline{M} is a diagonal from \overline{M} e e e i \overline{M} efficie c by i h ad a ced ech \overline{M} if \overline{M} a d a second e e e ce, achiele gived i \overline{M}_{pa} e \overline{M} he \overline{M} he \overline{M} a ehve \overline{M} de \overline{M} in he \overline{CM}_{pa} , a d \overline{M}_{pa} is the delet \overline{M}_{pa} of the end of the

The CM_{ra} ' $\Delta \Delta M_{ra}$ e M b Δ e ΔM_{ra} be i accM da ce Δ i h he i e ΔA_{ra} , M ed b he c M_{ra} egi Δ a iM a hM i i e Δ

The CM_{ra} ' \boxtimes_{e} ega, egi \boxtimes_{e} e d \boxtimes_{e} M e M f M e a M \boxtimes_{ha} be: $M \otimes_{e}$ ge e a M $a \boxtimes a$, M ed M e a M i e_m hea i g \boxtimes_{e} ice, i \boxtimes_{e} en $\langle CM \otimes_{e} a$ d $M \otimes_{e} a$ d $M \otimes_{e} M$ $\otimes_{e} M$ \otimes_{e}

The $C_{n-1}^{\mathcal{A}}$ a $\mathbb{Z}_{n-1}^{\mathcal{A}}$ a $\mathbb{Z}_{n-1}^{\mathcal{A}}$ dia $\mathbb{Z}_{n-1}^{\mathcal{A}}$ a $\mathbb{Z}_{n-1}^{\mathcal{A}}$ ha e $\mathbb{Z$

The CN_{a} a kna e kna be i he f N_{a} be i he f N_{a} f kna e ce if i ca e kna be i he f N_{a} f kna e ce if i ca e kna be i he f N_{a} f kna e ce i f i ca e kna be i c

 $A_{a,b} he \Delta ha e \Delta i \Delta \Delta e d b he C \partial _{a,b} a = \Delta ha_{a,b} ha e a a , a e \Delta hich \Delta ha_{a,b} be RMB1 f \partial e a ch \Delta ha e.$

The RMB $_$ e_i iM ed i he, ecedi g, a ag a h efe $\boxtimes_i M$ he $a\boxtimes_i f_i$ \circ_i e c M he PRC.

 CM_{μ} a $\Delta ha \in \Delta M ha$, be $i\Delta M$ ed ba $\Delta ed M$, he, i ci, $e\Delta M$ f M e $e\Delta M$, fai $e\Delta M$ a d j Δ ice. Sha $e\Delta M$ f he Δha_{μ} e, a ΔM f he Δha_{μ} e ΔM f he Δha_{μ} e ΔM f he Δha_{μ} for A is the set of the s

 F_{17} he $\Delta_{1,e_1c_1} a \Delta_{1} a \Delta_{1,e_1} a \Delta_{1,$

Fin he, $M \boxtimes M$ he, ecedi g, a ag a, h, he e ____i .e \boxtimes M \boxtimes M, \boxtimes de he PRC- \boxtimes ha, efe M i .e $\boxtimes M \boxtimes M$ f $M_{_L}$ fin eig cM, ie $\boxtimes M$ Hin g Kin g, Macain M. Tai \boxtimes a ha \boxtimes b \boxtimes c ibe fin \boxtimes ha e \boxtimes i \boxtimes de b he C $M_{_L}$ a . The e ____i .e $\boxtimes M \boxtimes i$ \boxtimes de he PRC- \boxtimes ha, efe M i .e $\boxtimes M \boxtimes i$ \boxtimes de he PRC, e c, di g he ab M e-__e in equive ed b he C $M_{_L}$ a .

The $\Delta ha = \Delta i \Delta \Delta i = \Delta ha$, $h = \Delta ha = \Delta i \Delta i = \Delta i \Delta i = \Delta i \Delta i = \Delta i$

The $e_{\mathcal{L}}$ f \mathcal{M} eig α e c -i he ecedi g a ag a h \mathcal{M} ha, efe \mathcal{M} he a \mathcal{M} fi, α e c f ee c \mathcal{M} , e ib e i \mathcal{M} he c \mathcal{M} i e \mathcal{M} e egi \mathcal{M} \mathcal{M} (e ce f \mathcal{M} RMB), \mathcal{M} hich i \mathcal{M} ec \mathcal{M} i ed b \mathcal{M} a eff eig e cha ge a h \mathcal{M} i a d acce, ab e \mathcal{M} , a f \mathcal{M} he \mathcal{M} ha e \mathcal{M}

The \Re e XeaX iX ed X ha e iXX ed b he $C\Re_{-1}$ a X hich iX iX ed i H \Re g K \Re g iX efe ed \Re aX H X ha eX a_e1, he RMB-de \Re_{-1} a ed X ha eX a \Re ed b he H \Re g K \Re g S \Re ck E cha ge f \Re iX i g X h \Re k X b X c i i \Re a d adi g a e i H \Re g K \Re g d \Re a X U \Re a \Re a \Re he S a e C \Re c i \Re age c eX a h \Re i ed b he S a e C \Re c i , a d X i h he c \Re X e f \Re_{-1} h \Re g K \Re g S \Re ck E cha ge, he d \Re_{-1} eX i c i . eX e f \Re_{-1} h \Re a eX c a be c \Re_{-1} e ed i \Re H X ha eX A, \mathcal{R} ed b \mathbb{A} eq i i i e g a \mathcal{R} a h \mathcal{R} i \mathcal{R} h e S a e C \mathcal{R} ci, \mathbb{A} ha eh \mathcal{R} de \mathbb{A} \mathcal{R} h e C $\mathcal{R}_{-\mathcal{R}}$ a ' \mathbb{A} d $\mathcal{R}_{-\mathcal{R}}$ e \mathbb{A} i ci

The $d\pi_e \boxtimes ic i : e\boxtimes_e$, $\boxtimes ha e\boxtimes i\boxtimes de b$, he $C\pi_e a$ a e ce a, de $\pi\boxtimes ied a$, he Chi a Seo i ie \boxtimes De $\pi\boxtimes \pi$ a d C ea i g $C\pi$, π a if Li_ined. The H $\boxtimes ha e\boxtimes \pi$ he $C\pi_e a$ a e _ai , de he ce a de $\pi\boxtimes \pi$ ' $\boxtimes o \boxtimes \pi$ d, \boxtimes hich be π g $\boxtimes \pi$ H π g K π g Seo i ie $\boxtimes C$ ea i g $C\pi_e a$ a Li_ined a d _an a $\boxtimes \pi$ be he d b $\boxtimes ha eh\pi$ de i i di id a a $e\boxtimes$

Af e he, a \boxtimes f \Re i \boxtimes i g \Re e \boxtimes a \boxtimes , i \boxtimes ed \boxtimes ha e \boxtimes a d d \Re _e \boxtimes ic i . e \boxtimes _e, \boxtimes ha e \boxtimes ha e bee a, \Re ed b he S, a e C \Re ci, a h \Re i ie \boxtimes i cha ge \Re f \boxtimes eo i ie \boxtimes , he C \Re _pa ' \boxtimes b \Re a d \Re f di ec, \Re \boxtimes _en, a a ge f \Re i pre_en, a i \Re \Re f \boxtimes ch, a \boxtimes b _ea \boxtimes \Re f \boxtimes e, a a e i \boxtimes a ce \boxtimes

The CM_{a} is a first in the second secon

Whe e he $Ci7_{a}$ is in the example of the exampl

The egilde ed ca, i a M he CM is a in RMB8,244,508,144.

U $(e \boxtimes M)$ he $\boxtimes i \boxtimes e$ M ided i he $(a \boxtimes a \ d \ ad_i)$ $i \boxtimes a$ i e eg $(a \ i M \boxtimes i)$ $i \boxtimes i$ g $(e \boxtimes M)$ he $\boxtimes ha \ e \boxtimes i$ $i \boxtimes i$ g $(a \ ce, M)$ hi $\boxtimes A$ ic $(e \boxtimes M)$ f $A \boxtimes M$ cia i M, he $\boxtimes ha \ e \boxtimes M$ he $C M_{cra}$ a be $(a \ \boxtimes f e \ e \ d \ acc)$ M i g $M_{cra} \boxtimes M$ he $(a \boxtimes M)$ he (

The $CM_{-ij}a = Ma_{ij} M_{j}acce_{ij} Maa e Ma_{j}he M bjec_{ij}Mf a_{ij}edge.$

The di ec $\sqrt[3]{2}$, (a), (a),

If a di ec, \sqrt{n} , \sqrt{n} , e i \sqrt{n} , \sqrt{n} de i \sqrt{n} iffice i \sqrt{n} the Ci ra, \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} de high dig 5% \sqrt{n} \sqrt{n} e \sqrt{n} the \sqrt{n} a \sqrt{n} for \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} b i g hit \sqrt{n} for \sqrt{n} b i g hit \sqrt{n} b i g

If he bind of f diec in \boxtimes if he Cin_{1} and $in \in \boxtimes$ if \boxtimes he cin_t \boxtimes if he he find, a ag a h, he example is diec in \boxtimes if he ag if he ag if \boxtimes be i accided a ce \boxtimes if he ag.

0

Acchi di g $\sqrt{10}$ e a $\sqrt{10}$ a d de e $\sqrt{10}$ _____ eed $\sqrt{10}$, he $\sqrt{10}$ _____ a ____ acchi di g $\sqrt{10}$ he $\sqrt{10}$ a d eg $\sqrt{10}$ $\sqrt{10}$

,

The CM_{i} a _____ i c ealle i a ca i a b he fM_Ma i g _____ hMda

- (1) Pi b, ic i a ce $\frac{1}{2}$ ha e ;
- (2) $N_{17}^{47} b_{10} ic i \mathbb{M}$ a ce $\sqrt{7} f \mathbb{M}$ ha e \mathbb{M}
- (3) $Di\boxtimes ib i \Re \Re b \Re i \boxtimes \Delta a e \boxtimes \Re e i\boxtimes i g \boxtimes a eh \Re de \boxtimes$
- $(4) \qquad C \overline{N} \ , \ e \ \underline{N} \overline{N} \ \ \overline{n} f \ c \overline{N}_{-\mathcal{L}} \overline{N} \overline{N} \ \ e \underline{N} e \ , \ e \ i \ \ i \ a \ ; \ a \$

The CM_{ra} _ a_{n} edice $i \boxtimes egi \boxtimes e$ edica $i \boxtimes a_{n}$. If the CM_{ra} edice $\boxtimes i \boxtimes egi \boxtimes e$ edica $i \boxtimes a_{n} \boxtimes c$ edic $i \boxtimes a_{n}$ is M and M and M is M and M

If he CM_{ra} ed celli le gille ed ca i a, a ba a celli he e a da i e M aff all le li le la de, e a ed. Where he CM_{ra} ed celli le gille ed ca i a, he CM_{ra} la la a fi fi he c edi M la d_ake a, b i c a M ce_e, i accM da celli h, M i la M le M he CM_{ra} La la , e a i la deb la M, M i de cM el M di g g a a eella la e i ed b he c edi M la

The ediced egil edica, i a Mf he CM_{pa} and M be ell has he as M_{pa} in i.m. on

The $CN_{i} = a_{i}$, i, he fN_{i} , M_{i} is g ci o _ M_{i} a cell, e, challe i M_{i} M is ded N_{i} and is M_{i} a la g N_{i} (ega, Niced e fN_{i} , M_{i} is the add in M_{i} in M_{i} a la e, i e, e M_{i} , M_{i} is a conducted in the Niced e M_{i} in M_{i} is a conducted in the Niced e M_{i} in M_{i} is a conducted in the Niced e M_{i} is a conducted e M_{i} is a conduct

(1) Ca ce $a_i i \partial$ $\partial f \Delta ha e \Delta i \partial \partial f de \partial ha e d ce i \Delta egi \Delta e e d ca i a;$

(2) Me ge $[a]_i h a \ a$ he $c \ a$ had i g $[a]_h a e \ a$ i he $C \ a$;

- (3) $A\boxtimes a$ where $M f e\boxtimes a d$, $di\boxtimes ib$ in $M f \boxtimes a e\boxtimes M \boxtimes aff M f$ he $CM_{-1}a$;
- (4) Açı i X i M M A a e A he d b X ha e h M de X (M he i e I e X) X h M M e agai X a e X M i M M de X (M he I i M he I i M M de d i a ge e a ____ee, i g M he ___e ge M di i X M i he C M ____ma ;

(5)

U \mathcal{W} ca ce a \mathcal{W} \mathcal{M} f he \mathcal{W} \mathcal{M} \mathcal{M} f Δ ha e Δ b \mathcal{W} gh, back, he $\mathcal{C}\mathcal{W}_{\mathcal{A}}$ a Δ ha a , \mathcal{W} he \mathcal{W} igit a $\mathcal{C}\mathcal{W}_{\mathcal{A}}$ a egi Δ a \mathcal{W} a h \mathcal{W} i f \mathcal{W} egi Δ a \mathcal{W} \mathcal{W} he cha get ed ca i a.

The $a_{M} = M_{f} + CM_{f} a$ ' egile ed ca, i, a be ed ced b he M_{a} , a a e M f he ba eleca ce, ed.

- (1) Where he CM_{ra} b \square back \square ha e \square a hei, a a e, he a \square he e M f \square be ded c ed f M_{ra} he bMM ba a ce M f d \square ib ab e, M fi \square a dM f M_{ra} he, M ceed \square M f a e \square \square ha e \square i \square a ce $_$ ade Mb back he M d \square ha e \square
- (2) Whe e he CM_{LTA} he \square back \square ha e \square a, a, ice highe ha hei, a a, e, he M in CM e \square M dig M hei, a a, e \square ha be ded c ed f M_{LTA} he bin M k ba a ce M f di \square ib ab e, M fi \square a d/M f M_{LTA} he here \square M he is a e \square M here \square M is a ce \square M if \square a d/M f M_{LTA} here a ce \square M here \square here \square M here \square

 - 2. Where he kina eki bin gh back kie e ikki ed a a ice highe ha hei a a a e, he a ki kina, be ded c ed f $i_{1...,h}$ he bin k ba a ce if diki ib ab e if i ki a d/i f i _____he i ceed if a eki kina eki ikki a ce __ade if b back he if d kina eki hiki e e, he a ki ded c ed f i ______he if ceed if he i ki kina eki ikki a ce kina, if e ceed he i a e__in____k b ai ed a he i __e if ikki a ce if he i d kina eki kini e ceed he a ki i he Ci ____a ki e__in____ acci i a ci _____k e e acci (i c, di g he e__in____k f i _____he e kina eki kina e

2. A
$$d_{0}$$
 A_{0} A_{0}

3. Re ealer f
$$M_{a}$$
 of i $\square M$ iga in \square de a e, challe of ac.

(4) Af e he a a le M he a l ded M he a M ha M ha M in M in M he a M ded c ed f M the CM he did is able i accided c ed f M the e a egal in M, ha M in M in M he a M ded c ed f M the did is able M is a did M be back M he e a a egal in M he a a eff he bin gh back M he e a c i a c i ded i he CM he a M ded c ed f M the back M he e a a eff he bin gh back M he e a c i a

The $CM_{ra} = M$ i $\boxtimes \boxtimes \boxtimes \boxtimes \operatorname{dia} i \otimes (i \ c_1 \ di \ g \ affi, i a \ \otimes) \boxtimes ha_1, M \ a_1 \ a_1 \ c_1, M \ ide a fi \ a_i \ a_i \otimes M \ a_i \ a_i \ c_1, M \ ide a fi \ a_i \ a_i \otimes M \ a_i \ a_$

The CM_{a} a M i \boxtimes \boxtimes b \boxtimes dia ie \boxtimes (i c) di g affi ia e \boxtimes) \boxtimes ha, M a a i e, M ide a fi a cia a \boxtimes \boxtimes a ce i a M_{a} M_{a} a M_{a} i e, M_{a} ide a fi a cia a \boxtimes \boxtimes a ce i a M_{a} M_{a} is a fi a cia a \boxtimes \boxtimes a ce i a fi a cia a \boxtimes M_{a} a ce i a fi a cia a \boxtimes M_{a} a ce i a fi a cia a \boxtimes M_{a} a ce i a fi a cia a \boxtimes M_{a} a f

The, \mathcal{U}_{i} is \mathcal{U}_{i} his A is escaped as \mathcal{U}_{i} a, \mathcal{U}_{i} here is a set described in A is escaped as \mathcal{U}_{i} his Charge.

 F_{M} he i $M \ge M / f$ hi \square Cha e, he $e __{LT}$ fi a cia a $\square M$ \square a ce $-\square$ ha i c i de (b M $i__{i_t}$ ed M) he fi a cia a $\square M$ \square a ce i he $f_{M} __{M}$ \square be $f_{M} \ge M$ be $f_{M} \ge M$.

- (1) $Gif_{i};$
- (2) Gi a a 'ee (i c' di g'he' de aki g M jiabi i M M i $\mathbb{N}N$ $\mathbb{N}N$ \mathbb{N} e b he g a a M i M de M \mathbb{N} \mathbb{N} eo e he e M \mathbb{N} a ce M he M jiga M b he M jiga M), i de *i* i (M i c' di g, M \mathbb{N} e.e., i de *i* i a i g f M *i* he CM *i* a ' $\mathbb{N}M$ fa ,) a d e ea $\mathbb{N}N$ \mathbb{N} ai e M igh \mathbb{N} ,
- (3) P \overline{M} i \overline{M} \overline{M} f a \overline{M} a \overline{M} c \overline{M} c \overline{M} c \overline{M} a c \overline{M} a c \overline{M} a c \overline{M} be $\overline{$

The ac \square i \square ed be M_{\square} \square be ega ded a \square he ac \square M hibi ed i de A ic e 37 M hi \square Cha e :

- (1) Where he CN_{ra} , N ide Δ here, e. a financia, a $\Delta \Delta \Delta \Delta$ a ce i hfind fine be effinite the CN_{ra} and here i , $N\Delta e$ of the financia, a $\Delta \Delta \Delta \Delta \Delta$ a ce i ΔA , N, in the characteristic term of the contracteristic term of term of
- (2) Lat f_i dia $ib_i in \pi f_i$ he C $\pi_{-\pi}$ a ia_i he $f_i = f_i f_i$ di ide da
- (3) Dix ib if M f di ide dx he $f = \frac{1}{2} M f i x$ at $x = \frac{1}{2}$

⁰

(4) Red c in $\Re f$ egil e ed ca i a, e, challe $\Re f$ in a el $\Re h$ a eh $\Re f$ di g i c, i g, e, c., i acc $\Re f$ da ce $\Re h$ he A ic el $\Re f$ All $\Re f$ for $\Re f$ he C \Re_{-1} a ;

(5)

- (4) The Δe ia, i = be iff, he $\Delta ha e \Delta he d b$ each $\Delta ha e h i d e$;
- (5) The date $\sqrt[n]{2}$ which each $\sqrt[n]{2}$ he in $\sqrt[n]{2}$ e da $\sqrt[n]{2}$ a $\sqrt[n]{2}$ hich each $\sqrt[n]{2}$ he in $\sqrt[n]{2}$ e da $\sqrt[n]{2}$ a $\sqrt[n]{2}$ hich each $\sqrt[n]{2}$ he in $\sqrt[n]{2}$ e da $\sqrt[n]{2}$ he in $\sqrt[n]{2}$ he i
- (6) The daye \Re which each what h de ceaws \Re be a what h de .

The egitade of the child of a local term of the child of

The CM_{in} a m_{in} , M_{in} a M_{in} de M_{in} de M_{in} de M_{in} and M_{in} de $M_$

The $CM_{ca} = \Delta ha_{ca}$ kee $a_i \boxtimes dM_{ca}$ is $a_i a_i$, $ica \in M$ he egi $\boxtimes e$ if hM_i de $\boxtimes M$ if M_i e $\boxtimes ea \boxtimes_i \boxtimes e \boxtimes A$ and M_i and M_i e $\boxtimes e \boxtimes A$ is M_i and M_i e $\boxtimes e \boxtimes A$ is M_i and M_i e $\boxtimes A$ is M_i and M_i e $\boxtimes A$ is M_i e

Where he \overline{N} igit a, a d d , ica e \overline{M} here egi e \overline{M} h \overline{N} de \underline{N} if \overline{N} e \underline{N} ead is a e i c \overline{N} \underline{N} e , he \overline{N} igit a \underline{N} have e at.

The CM_{pa} Δha_k kee, a cM_{pa} e egi Δe M Δha ehM de Δ

The egi \boxtimes e M \boxtimes ha ehM de \boxtimes ha, i c, de he M M i g, a \boxtimes

- (1) A egil e ke, a he C_{1} a ' \mathbb{M} is i e \mathbb{M} he ha he is ecified i $I_{e} \mathbb{M}$ (2) a d (3) \mathbb{M} hild a ic e;
- (3) Regi⊠e ⊠Mf ⊠ha ehM de ⊠ke, i ⊠ ch M he, ace⊠a⊠ he bMa d Mf di ec M ⊠__en decide ece⊠⊠a fM i⊠ i g , , M⊠e⊠

The a $iN \boxtimes a \otimes M$ he egi $\boxtimes e M$ is a hold $d \otimes \boxtimes ha \otimes M$ he ea iN e a iN e a iN he . The a $\boxtimes fe M$ is M ha e $\boxtimes gi \boxtimes e$ ed i a ce ai , a M he egi $\boxtimes e M$ is M ha eh M de $\boxtimes M$ a M, d i g he cM i a ce M he egi $\boxtimes a$ iN M is M he egi $\boxtimes e$ di a M he egi $\boxtimes e$ di a M he egi $\boxtimes e$ ed i a M he egi $\boxtimes e$ di a M he egi \boxtimes

- (1) A a ⊠fe i ⊠ i __e, Ø Ø he i ⊠ i __e, ⊠ hich e a e⊠ Ø Ø ⊠ha e Ø @ e ⊠hi Ø __e affec ⊠ha e Ø @ e ⊠hi __e,) Ø ⊠ ch Ø he highe fee de e __ined b he bØ ad Ø f di ec Ø ⊠ (b , ⊠ ch fee⊠ ⊠ha, Ø e ceed he __e i __n ___ e⊠ be di he dø i __he , i⊠ i g i , e⊠ Ø f he HØ g KØ g S Ø ck E cha ge f Ø __ni_e, Ø , i_e) ⊠ha, be, aid fØ ⊠ ch egi⊠ a iØ ;
- (2) The a \square fe i \square i \square i \square for M , e, a, e \square , M H \square ha e \square , i \square ed i HM g KM g;
- (3) The die $\boxtimes_{a_{1}} a$ $\bigwedge_{a_{1}} d$ $\bigwedge_{a_{1}} f \Re_{a_{1}} a$ $\boxtimes_{a_{1}} f \Re_{a_{1}} a$ $\boxtimes_{a_{1}} a$ $\bigwedge_{a_{1}} ha \boxtimes a$ and bee, aid;
- (4) Referrar Maa e ce ifica e a d Mach Mahe e ide ce a Mahe di ec Ma Δ_{a} e a Δ_{a} e i e Mate i e Mate a e Maded;
- (5) T a $\Delta fe \ M f a \ \Delta ha e \ M \ M \ M \ ha f \ h \ M \ h \ M \ h \ M \ de \ M$
- (6) The $\Delta ha \in \Delta c \mathcal{H}$ ce ed a e f ee $\mathcal{H} f a$ is if $a \mathcal{H} \mathcal{H} he C \mathcal{H}_{a}$;
- (7) A \square ha e \square ha \square , \square be a \square fe ed \square fa i fa \square \square fa e \square f \square fa \square fa

Sha eh \Re de \Re f a f \Re eig i $\Re_{-\mathfrak{S}}$ \mathbb{A} ha e $\mathbb{A}_{-\mathfrak{S}}$ a \mathbb{A} f e a \Re a \Re f hi \mathbb{A} \mathbb{A} ha e \mathbb{A} h \Re gh a i $\mathbb{A}_{+-\mathfrak{S}}$ i he \mathbb{A} a \mathbb{A} i g f $\Re_{-\mathfrak{S}}$ he e e a e i \Re \Re f \mathbb{A} ch \mathbb{A} ha e \mathbb{A} i \mathbb{A} ch \Re he f $\Re_{-\mathfrak{S}}$ a \mathbb{A} he di ec \Re $\mathbb{A}_{-\mathfrak{S}}$ acce. The a \mathbb{A} fe \Re f H \mathbb{A} ha e $\mathbb{A}_{-\mathfrak{S}}$ ad \Re , he \mathbb{A} a dad a d a \mathbb{A} fe f $\Re_{-\mathfrak{S}}$ e \mathbb{A} i \mathbb{A} ch \Re he H \Re g K \Re g \mathbb{S} \Re ck E cha ge. The a \mathbb{A} fe i $\mathbb{A}_{+-\mathfrak{S}}$ and \mathbb{A} he is a dad \Re if he a \mathbb{A} fe \Re \Re a \mathbb{A} fe ee i \mathbb{A} a c ea i g h \Re \mathbb{A} e \Re i $\mathbb{A}_{-\mathfrak{s}}$ defied b H \Re g \mathbb{K} \Re g \mathbb{S} eo i i e \mathbb{A} d i a ce, a ha d \mathbb{A} i e $\Re_{-\mathfrak{S}}$ he i e i \mathbb{A}_{+} i e \mathbb{A} g a e \mathbb{A} ha be acce, ab e.

NNT cha ge \boxtimes e \boxtimes i g f $N_{_}$ Baha e a \boxtimes fe $\boxtimes_{_ah}$ be _ande $N_{_}$ he egi \boxtimes e $N_{_}$ Baha eh $N_{_}$ de \boxtimes ge e a _aee i g $N_{_}$ 5 da \boxtimes , i $N_{_}$ $N_{_}$ he efe e ce da e \boxtimes e b he $CN_{_}$ he, $N_{_}$ Me if di \boxtimes i de d \boxtimes i $N_{_}$ i $N_{_}$ i de d \boxtimes i de d \boxtimes

0

Whe he CM_{\perp} for a cM_{\perp} e exage e a ere i g, dix in existing direction of the example of

A , e $\boxtimes 7$, ha cha , e ge \boxtimes , he egi \boxtimes e $\inf \boxtimes$ ha eh \Re de \boxtimes a d e i e \boxtimes hi \boxtimes a _e, \Re be e ed i $\Re \Re$ e _i \Re ed f \Re _mhe egi \boxtimes e _e a , \Re a c \Re _re e c \Re f \Re c \Re e c i \Re \Re f he egi \boxtimes e .

A
Ma eh/A de Maria egime ed i he egime // Ma eh/A de Mareira e i em him a egime // Ne e e ed i // he egime // Ma eh/A de Mareira e i em ec // Mareira e /

A , ica in $\[Mathbb{M}]$ here, ace_e, $\[Mathbb{M}]$ difference is explicit to explicit the explicit of the explicit to explicit explicit to

A, ica in \square for the e, ace of off off e \square e \square and in \square e c ifica e \square \square has be deal \square in the accordance \square is a constant accordinate according to a constant accord

Whe e had de \boxtimes of H \boxtimes ha e \boxtimes a, for e, ace \square of \boxtimes for e, if ica e \boxtimes , \boxtimes ch e, ace \square of \square of of \square of \square of \square of \square of of \square of of \square of of \square of of \square of of \square of of \square

- (1) The a , ica \boxtimes ha, \boxtimes b in the a , ica i \Re i the f \Re $_{\mathcal{I}}$ e \boxtimes ibed b the C \Re $_{\mathcal{I}}$ a tack $\mathbb{Z}_{\mathcal{I}}$ a ied b a \Re a ia ce ificate \Re \boxtimes a \Re \Re decta a i \Re . The \Re a ia ce ificate \Re \boxtimes a \Re \Re decta a i \Re \square ha, i c, de the a , ica ' \boxtimes ea \mathbb{N} ? f \Re the a , ica i \Re , the ci o $_$ \boxtimes a ce \boxtimes a d , i \Re ? f \Re f the \Re \square ha e ce ificate a d a decta a i \Re \boxtimes a i g that \Re \Re the the \mathbb{N} $_$ on the etal d , i \Re \Re a \boxtimes a \boxtimes ha eh \Re de i e \boxtimes ec \Re f the Refer a , Sha e \boxtimes ,
- (2) The CM_{ra} hall M_{ra} ecci. ed a dec a a iM_{ra} e i i g egil a iM_{ra} all a land eh M_{ra} de i elle c M_{ra} he ha he a ica bef M_{ra} e i decide ha a e acc_e M_{ra} ha e ce if ica e land, be i M_{ra} be i M_{ra} e i decide decide i d
- (3) If he CM_{a} a decide X, M is M is a e, ace_e, X has e ce if ica e, M, he a ica i, i M have b, iM h
- (4) Bef \overline{N} e, b, $i\overline{\Omega}$ hi g, he, i b, ic a \overline{N} ce_e, \overline{M} i $\overline{\Omega}$ i e $i\overline{N}$ \overline{N} $i\overline{\Omega}$ $\overline{\Omega}$ e a e, ace_e, $\overline{\Omega}$ ha e ce ificate, he C \overline{N} ra $\overline{\Omega}$ ha, $\overline{\Omega}$ b in a c \overline{N} \overline{M} he a \overline{N} ce_e, \overline{N} be i b, $i\overline{\Omega}$ hed \overline{N} he $\overline{\Omega}$ o i, $ie\overline{\Omega}$ e cha ge $\overline{\Omega}$ he e i $i\overline{\Omega}$, $i\overline{\Omega}$ ed a d e, \overline{N} ceed $\overline{\Omega}$ i h, he i b, ica $i\overline{N}$ i \overline{N} ecei, \overline{M} f a e, f \overline{N} rhe $\overline{\Omega}$ o i, $ie\overline{\Omega}$ e cha ge c \overline{N} fi i i g, ha, he a \overline{N} ce_e, ha $\overline{\Omega}$ be e di $\overline{\Omega}$, a ed i he $\overline{\Omega}$ o i i e $\overline{\Omega}$ e cha ge. The i b, ic a \overline{N} ce_e, $\overline{\Omega}$ ha, be di $\overline{\Omega}$, a ed i he $\overline{\Omega}$ o i i e $\overline{\Omega}$ e cha ge f \overline{N} a e i \overline{N} d \overline{M} f 90 da $\overline{\Omega}$

If he a , ica is find in the a centre of the equation of the contrast of the

(5) U \Re e i \Re f he 90-da e i \Re d \boxtimes ecified i I e \boxtimes (3) a d (4) he e \Re f, if he $C\Re_{\perp}$ a ha \boxtimes \Re ecci ed a \Re bjec i \Re \Re he i \boxtimes a ce \Re f a e ace $_$ and a ce if ica e f \Re_{\perp} a e \boxtimes \Re , i $_$ an i \boxtimes e a e ace $_$ and a ce if ica e ace \Re ha e ce if ica e ace \Re ha e ce if ica e ace \Re ha e ce if ica e ace \Re he a ica i \Re \Re f he a ica R.

- (6) Whethe CM____a i⊠ e⊠ a et ace__et Ma e ce ificatet de thi⊠ A icte, i ⊠hatti_mediatet ca cet he a igi a ⊠ha e ce ificate a decM d⊠ ch ca cetta iM a d he i⊠ a ce Mf he et ace__et Ma e ce ificatei the egi⊠et Mf ⊠ha ehM de ⊠
- (7) A_{i} , e_{i} , e_{i}

Af e he CM_{-1} a ha \boxtimes i \boxtimes a e a e ace_e \boxtimes ha e ce ifica e i accM da ce \boxtimes i h hi \boxtimes A ic \boxtimes M f A \boxtimes M cia iM, i \boxtimes ha e M f de e e f M_{-1} he egi \boxtimes e M f \boxtimes ha e hM de \boxtimes he a_e M f a bM a fide, i cha \boxtimes e M f he e ace_e \boxtimes M a e ce ifica e $_$ eqiM ed abM e M f a \boxtimes ha e hM de \square ha i \boxtimes \boxtimes b \boxtimes i e \square egi \boxtimes e d a \boxtimes he M e M f he \boxtimes ha e \boxtimes (M ided ha he i \boxtimes a bM a fide, i cha \boxtimes bM a fide, i cha \boxtimes b M e M f he \boxtimes ha e \boxtimes (M ided ha he i \boxtimes a bM a fide, i cha \boxtimes).

The $CM_{ra} \otimes Ma_{1} \otimes M_{1}$ be imposed in a darge $\otimes M_{1}$ if e d b a e $\otimes M_{1}$ if M_{ra} he cace, a if M_{1} is a matrix of the end of the end

The $Ci_{1,j}$ a 'Ma ha ehid de Q a e e Q M M M A M f , hid Q ha e M f he $Ci_{1,j}$ a a d Q hid Q ha e M ha e bee e e ed i he egi Q e inf Q ha ehid de Q

Sha ehM de \square Ma a \square igh \square a d ha e Mb iga iM \square MaccM di g M he c a \square a d \square be Mf \square ha e \square he d. HM de \square Mf \square ha e \square Mf \square he \square a \square Ma a d ha e g \square a \square Mb iga iM \square

Sha eh/ \overline{A} de \overline{M} fe e c a 2020 22 ha e j/ \overline{A} e j/\overline{A} e j/ \overline{A}

 $\begin{array}{c} Whe e _ M e ha \ \boxtimes M e \boxtimes N \boxtimes a e egi \boxtimes e ed a \boxtimes j M \ \boxtimes ha eh M de \boxtimes M f a \ \boxtimes ha e, he \boxtimes ha \ be dee_ed a \boxtimes j M \ hM de \boxtimes M f he e e a \ \boxtimes ha e, a d \boxtimes ha \ be e \boxtimes ic ed b \ he f M \ M \boxtimes i g \ e _ M \end{array}$

- (1) The $CM_{-1}a$ eed M_{1} egi $e_{1}M_{1}e_{1}ha$ for $e_{1}M_{2}e_{2}M_{1}e_{3}ha$ end $M_{1}a$ end $M_{2}a$ and $M_{2}a$ end $M_{2}a$ end M
- (2) $A_{i,j}$ j $M_{i,j}$ $\Delta A_{i,j}$ $M_{i,j}$ $\Delta A_{i,j}$ $M_{i,j}$ $\Delta A_{i,j}$ $M_{i,j}$ $\Delta A_{i,j}$ $M_{i,j}$ $A_{i,j}$ $A_{i,j}$ $M_{i,j}$ $A_{i,j}$ $A_{i,j}$ A
- (1) I calle lift dea h lift if e lift he jish Na ehild de Nift, he lift he Na, i i g jish Na ehild de (N) Na, be dee_ed a Nift e lift he Na ekild e Nift, he i Na ehild de Nift e lixit g he egil e lift Na ehild de, he bild d lift di ec lift Na ehild de, he Nift he Na ehild de i i g Na ehild de (N) lift, i g Na ehild de (N) lif

(2) Fŵ jŵn Nana ehŵ de Nônfa Nana e, he e Nan Na Ma a_en Na d⊠fi Na i he egiNe Na, be e i, ed Na ecei, e Nana e ce ifica e ŵn he e, e, a Nana eN ecei, e ŵ ice fŵ ____ne Cŵ ___na , a, e d, he ge e a ____ee i gN ŵ e e ciNe. W i g ŵn e, e, a Nana eN a d, he Ne ice ŵn ŵ ice ŵn he afŵ eNaid, e Na Na, be dee__ed an Ne ice ŵn ŵ ice ŵn a, jŵn Nana ehŵ de Na

Where $\overline{n} \in \overline{n}f$, he j $\overline{n}i$ what ehter de \overline{a} de \overline{a} de \overline{a} even, \overline{n} he $C\overline{n}_{\mu}a$ and ega de $\overline{n}a$ divide de \overline{b} be $\overline{n}i \otimes \overline{n}i$ even, $\overline{n}f$ can i, a which what be divided in the det \overline{n} what ehter de \overline{a} with a characteristic de \overline{a} de \overline{a} , \overline{a} de $\overline{$

 $H_{\mathcal{A}}^{\mathcal{A}} de \boxtimes \mathcal{A} f \mathcal{A} di a \boxtimes ha e \boxtimes \mathcal{A} f he C \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} a \boxtimes ha e j \mathcal{A} he f \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \mathcal{A} j i g igh_{\mathcal{A}} u g igh_{\mathcal{A}} u g igh_{\mathcal{A}}^{\mathcal{A}} b i g igh_{\mathcal{A}}^{\mathcal$

- (1) T_{n}^{M} ecci. e di. ide da d \overline{n} he , \overline{n} fi dia ib $\overline{n} \overline{n} \overline{n} \overline{n}$ he baa $\overline{n} \overline{n}$ he $\overline{n} \overline{n} \overline{n}$ he $\overline{n} \overline{n}$ he $\overline{n} \overline{n}$ he $\overline{n} \overline{n}$
- (2)

- (i.) $e_{1}N \boxtimes M$ he agg ega $e_{1}a_{1}e_{1}$ _be M $\boxtimes ha e \boxtimes a$ d highe $\boxtimes a$ d $M \boxtimes e \boxtimes$ ice $\boxtimes M$ each c a $\boxtimes M$ $\boxtimes M$ $\boxtimes ha e \boxtimes h$ back b he CM_{pa} \boxtimes ce he a $\boxtimes M$ fixes ea a $\boxtimes \boxtimes e_{1}$ a $\boxtimes a$, he e e $\boxtimes e \boxtimes$ aid b he CM_{pa} he eff ;
- (.) $bi7 d\boxtimes \boxtimes_i b\boxtimes_i _i_1$, $e\boxtimes inf ge e a$, $_ee_i g\boxtimes_i e\boxtimes n_i$, $ii7 \boxtimes inf bi7a d _ee_i g\boxtimes_i e\boxtimes n_i$, $ii7 \boxtimes inf m_i he bi7a d inf m_i e . <math>i\boxtimes n \boxtimes_i ee_i g\boxtimes_i fi a cia$, $e_i in \bigotimes_i inf m_i e$.
- (.i) he $CN_{-1}a$ ' $\square_{-1}M$ ece, a di ed fi a cia $\square a e_{-1}a$, $\square a d e_{-1}N$ he bNa d N f di ec $_{-1}N$ $\square a$ di N $\square a d$ he bNa d N f $\square e_{-1}$ $\square N$ $\square A$
- (. ii) cM Mif he a e⊠ a i a e ie⊠ e M ⊠hich ha⊠ bee fi ed ⊠i h he I di ⊠ a d CM_____ne ce Ad___in i⊠ a iM Bi ea Mif he PRC Mi Mihe cM____re e a hMi i ie⊠
- (6) Whe he CM_{ra} e in a e M is ida e cei e i M a a e if e at i g a e i f he CM_{ra} a condition of the condition of th
- (7) If a that $eh_{\mathcal{H}}$ de \mathcal{H} , $\mathcal{H}_{\mathcal{H}}$ he $_e_1$ ge \mathcal{H} di $i \boxtimes \mathcal{H}$ $\mathcal{H}_{\mathcal{H}}$ he $C\mathcal{H}_{_\mathcal{H}}$ a single e a $_e_1$ i g, he $_e_1$ e i e \boxtimes he $C\mathcal{H}_{_\mathcal{H}}$ he back hi \boxtimes that $e \boxtimes$
- (8) O, he ight \square de he a \square , ad $_i$ i \square a i e eg a i \square \square de a $__e$, a eg a i \square \square a d hi \square A i c e \square \square \square f A \square A

Where a e $\boxtimes 7$ diec, $\boxtimes 7$ i diec, ha i g igh $\boxtimes a$ di e $\boxtimes \boxtimes 7$ fai $\boxtimes 6$ $\boxtimes 6$ i gh $\boxtimes a$ di e $\boxtimes \boxtimes 8$, he $C = 2 \boxtimes 7$ a $\boxtimes 6$, $\boxtimes 7$ e e ci $\boxtimes 6$ i $\boxtimes 6$ igh $\boxtimes 7$ ha $_xa$ igh $\boxtimes 7$ f $\boxtimes 6$ ch e $\boxtimes 7$ a ached $\boxtimes 7$ he $\boxtimes 6$ a di e e $\boxtimes \boxtimes 8$.

When a $\Delta ha = h \Re de = g + e \Delta R ha$, $ha = acce \Delta R he i = i \Re - e_1 i \Re e d i he eccedi = g A icce A he <math>\Delta ha$.

If a di ec, \overline{n} , \overline{n} \underline{N} e in \overline{n} fiftice ch a e e \underline{N} , he \underline{n} , $\underline{$

If a , e $\boxtimes 7$ i , e , e $\boxtimes \boxtimes 1$, h , h , a $\boxtimes 1$, i , e $\boxtimes \boxtimes 1$, f , h e $\bigcirc 1$, $\square 2$, a a d $\boxtimes 1$, i , $\boxtimes \boxtimes 2 \boxtimes 2$ and f , h e $\bigcirc 1$, a $\boxtimes 1$, a a g a h , a a g a h , a d $\bigcirc 1$, a d e $\boxtimes 1$, a d e

0

If a di ec \Re \Re \boxtimes in \Re fiftice ch a e e he a \boxtimes , ad in \boxtimes a i e eg (a in \boxtimes \Re hi \boxtimes A ic \otimes \Re A \boxtimes \Re cia in \Re , he eb da agi g \boxtimes ha eh \Re de \boxtimes i e e \boxtimes \boxtimes he \boxtimes ha eh \Re de \boxtimes ca ch ch is c i i ga in i he ch .

- $(1) \qquad C^{t}_{1} = \sum_{i=1}^{t} \sum_{i=1}^{t} |h_{i}| a = a_{i}, a = e_{2} a_{i} = e_{2} a_{i} = a_{i} =$
- (2) Pa fill the two and t
- (3) Ca 17 all he Chi_na 17 edee_nh Mae ana ea e ce, all eac ibed b he all 17 ad_in ia a i e eg a in a
- (4) Ca i ab \boxtimes hi \boxtimes igh \boxtimes a \boxtimes a \boxtimes ha ehi de i ha ____he Ch____a ' \boxtimes he \boxtimes ha ehi de \boxtimes i e e \boxtimes a i \boxtimes he $Ch___{ra}$ a d he $i__{i}$ ed i ab i he \boxtimes ha ehi de \boxtimes h ha ____he i e e \boxtimes \boxtimes f c edi i \boxtimes

A Bana eh 17 de \boxtimes h 17 ab \boxtimes e \boxtimes h 18 Bana eh 17 de \boxtimes igh \boxtimes e \boxtimes , i g i $(M \boxtimes \boxtimes \boxtimes \boxtimes M)$ he $C = M_{-1}^{-1} a$ a d 17 he \boxtimes ha eh 17 de \boxtimes Bana eh 18 de \boxtimes Bana eh 17 de \boxtimes Bana eh 18 de \boxtimes Bana eh 17 de \boxtimes Bana eh 18 de \boxtimes Bana eh 17 de \boxtimes Bana

Sha ehM de \boxtimes hM ab \boxtimes he ega, e \boxtimes 7 a, i, M f he $CM_{\perp p}$ a d i i i ed i abi, i, M f \boxtimes ha ehM de \boxtimes i M de M e \boxtimes ca e f $M_{\perp p}$ i abi, i, he eb \boxtimes e i M \boxtimes da agi g he i e e \boxtimes M f c ed M \boxtimes of he $CM_{\perp p}$ a ,

The ch^{\prime}_{i} is \mathbb{Z} is \mathbb{Z} and \mathbb{Z} is \mathcal{Z} is \mathcal{Z} . The ch^{\prime}_{i} is \mathbb{Z} is \mathbb{Z}

The cN, N is goin a children a data children have a direction of the end of the N and N have CN_{cr} and N by items of the CN_{cr} and N and N and N have N and N have N and N have N and N have N and N and N have N and N

- (1) Reviewing a direct M M M , evided 7 M the exploration of M and M explored in the best interval interval in the best interval in the best interval in
- (2) A, \overline{M} i g a di ec \overline{M} \overline{M} \square , e i \overline{M} \overline{M} (f \overline{M} hi \square \overline{M} \overline{M} \overline{M} e e \overline{M} \overline{M} i g a di ec \overline{M} \overline{M} \square \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M} i g a \overline{M
- (3) A, M i gadi ec, M M Ø, e. i⊠N (M hi⊠MØ, M a M he, e ØN 'Ø be efi,), M de i e M he Øna ehM de Ø Mf hei igh ØN i e eØØ i c, di g (b, M i_i_ned M) he igh Ø M diØ ib iM Øa d. M i g igh Ø b, M i c, di g eØ i c, i g Mf he CM_na Ø b_n ed M a d adM ed a, he Øna ehM de Øge e a __ee i g i accM da ce Øi h, he A, ic eØMf AØØNcia iM Mf he CM_na.

The e $\lim_{n \to \infty} cN$, M i g \mathbb{Z} ha e M de $-\lim_{n \to \infty} iN$ e d i the the ecedi g A ic e efe \mathbb{Z} , N a e \mathbb{Z} ? The \mathbb{Z} ha \mathbb{Z} ha \mathbb{Z} is g \mathbb{Z} ha \mathbb{Z} ha \mathbb{Z} is g \mathbb{Z} ha \mathbb{Z} if \mathbb{Z} ha \mathbb{Z}

- (1) He, ac i g a \Re e \Re i c \Re ce \aleph i h \Re he \aleph ha \aleph he \aleph ha \aleph he \Re e ce κ e ha ha f \Re f he di ec \Re \aleph ,
- (2) He, ac i g a $\Re \in \Re$ i c \Re ce \aleph i h \Re he \aleph ha \aleph he \Re ha \aleph he κ ci \aleph c \Re he e ci \aleph he ci \Re he e ci \aleph he ci \Re he ci \Re he ci \Re ci g ci h \Re he ci \Re ci g ci h \Re he ci \Re ci g ci h \Re he ci \Re ci g ci h \Re he ci \Re ci g ci \Re he ci \Re ci \Re he ci \Re he ci \Re he ci \Re ci \Re he ci \Re ci \Re he ci \Re ci \Re he ci
- (3) He, ac i g a \Re e \Re i c \Re ce \bigotimes_{i} h \Re he \bigotimes_{i} h \Re d \boxtimes 30% \Re $_{\Re}$ e \Re f he i \boxtimes a d a d \Re \bigotimes_{i} a di g \boxtimes ha e \boxtimes \Re f he C \Re $_{\Gamma}$ a ;

The ge e a __ee i g \boxtimes ha, be he \Re ga \Re f a h \Re i \Re f he $C\Re_{\rightarrow}a$ a d \boxtimes ha, e e ci \boxtimes e he fi c i \Re \boxtimes a d \Re a d \Re a d \Re a c i \Re di g \Re a \boxtimes .

(16) Re. ie $\mathbb{A}_{\mathbf{x}}$, \mathbb{A}_{\mathbf

(17) Re. ie⊠ Marke __an, e ⊠ Marke a, Marke a, he ge e a, __ee, i g a⊠, e⊠c ibed b, he a⊠, ad__in i⊠ a i e eg a iMarke a, de a ,_en, eg a iMarka a i g a e⊠Marke cha ge ⊠ he e he CM_cna iMarka e⊠a e i⊠ed Marke a hi⊠A ic e⊠Marka iMarka iMarka.

- (1) A e e a g a a ee b he Ch_{a} a n i \boxtimes b \boxtimes dia a d a \boxtimes b \boxtimes e g a a ee, \boxtimes h n \boxtimes a a_{a} a i \boxtimes e a a ee, \boxtimes h n \boxtimes b n a i \boxtimes e a a ee, \boxtimes h n \boxtimes b \boxtimes a a ee, \boxtimes h n \boxtimes b \boxtimes b \boxtimes a a ee, \boxtimes h n \boxtimes b \boxtimes b \boxtimes b \boxtimes a a ee, \boxtimes h n \boxtimes b \boxtimes
- (2) A e e a g a a e e b he Ch_{ra} a d a $\Delta b\Delta e$ i e g a a e e, $\Delta hM\Delta e$, hA = h i Δe i a hA = h i Δe i a hA = hA i a hA
- (3) TM, \mathcal{M} ide g a a ee \mathcal{M} e i ie \mathbb{M} i h \mathcal{M} e ha 70% deb e i a i \mathcal{M} ;
- (4) A \boxtimes g e g a a e \boxtimes have a \square e ceed $\boxtimes 10\%$ of he a \boxtimes a died e a \boxtimes \boxtimes
- (5) $T_{\mathcal{H}}$, \mathcal{H} ide g a a see f \mathcal{H} \square ha eh \mathcal{H} de \square , as \mathcal{H} , \mathcal{H} , e a d i \square a \square \square \square \square \square
- (6) O he g a a $ee \boxtimes \boxtimes hich \boxtimes ha$, be a $\boxtimes \boxtimes ed a$ he ge e a $_ee$ i g a \boxtimes e $\boxtimes e$ ibed b he $\Im a$ a $\boxtimes \boxtimes e$ cha ge $\boxtimes he e$ he $C \boxtimes_{a}^{n}$ a $\boxtimes \boxtimes ha e \boxtimes a e$ i $\boxtimes ed a d$ hi $\boxtimes A$ ic $e \boxtimes \Im f A \boxtimes \Im f$ cia i $\Im f$.

E ce \boxtimes he he CN_{ra} is de a \boxtimes ecia ci o \square a ce \boxtimes ch a \boxtimes a ci \boxtimes he CN_{ra} \square ha N, \boxtimes hN, \boxtimes hNa a, M a b a \boxtimes ecia e $\boxtimes N$, in a age e a _ee i g, e e i M a ch a ci \square ha dN e a N a N f he _en age_en M f i rN a _en e $\boxtimes N$ f he CN_{ra} M a e $\boxtimes N$ f he ha M a di ec M, \boxtimes e i $\boxtimes N$ f he \boxtimes in N frice.

The ge ea __ee i g \boxtimes A i a ge ea __ee i g \boxtimes A i a ge ea __ee i g \boxtimes A i a ge ea __ee i g \boxtimes A i a __ee i g { A i a __ee i g }

The bMad Mf diec M 🛛 Ma, cM , e e a e , a M di a ge e a __ee i g 🖄 i hi [a] M [b] M [b

- (1) The ______be $\Re f$ di ec $\Re \boxtimes i \boxtimes e \boxtimes$ ha he _____be , $\Re i$ ded $\Re \pi$ i he $C \Re_{-r}a$ La $\boxtimes \Re$ \Re $R \boxtimes \Re$ ha $\boxtimes \Re$ ha $\otimes \mathbb{N}$ ha $\otimes \Re$ ha $\otimes \mathbb{N}$ ha \otimes
- (2) The MX = X if the C_{1} is the the theta is theta is the theta is theta is theta is the theta is the theta is the
- (3) Shaeh Ar de ⊠⊠h Ar i di idi a, Ar Arge, he h Ar d_Are, ha 10% Arf, he ⊠hae⊠Arf, he Cha_pa e, i ed i ⊠ i i g a e, a Ar di a ⊠haeh Ar de ⊠ ge e a __ee i g Ar be chr. e ed;

- (4) Where e he bha d h f di ec $\frac{1}{2}$ \mathbb{Z} de \mathbb{Z} ece \mathbb{Z} a ;
- (6) O he ci o A a ce est ibed b he as $A_{in} = a_{in} = a_{in}$
 - 0

The e e \sqrt{n} had a ge e a __ee i g \sqrt{n} he $C\sqrt{n}$ a \sqrt{n} a \sqrt{n} be he \sqrt{n} is i e \sqrt{n} he $C\sqrt{n}$ a \sqrt{n} he \sqrt{n} ecific \sqrt{n} ca in i for __ed b he contract e e \sqrt{n} he ge e a __ee i g.

The ge e a __ee i g Δha , ha e a e i e a d be he d $\partial 7 - \Delta i$ e. The $C\partial 7_{a}$ a Δha , a $\Delta 7$, $\partial 7$ ide i e e $\partial 7$ $\partial 7$ he __ea Δe_{1} i e d b e e a Δe_{2} i i e Δe_{3} a $\partial 7$ i i e $\Delta f \partial 7$ he c $\partial 7$ i e i e ce $\partial f f \Delta ha$ e h $\partial 7$ de Δa , e d a ce. A Δha e h $\partial 7$ de $\Delta h \partial 7$ a ici a ed i a ge e a __ee i g i he af $\partial 7$ e Δa i e $\Delta \Delta ha$, be dee_ed $\partial 7$ ha e bee e Δe_{2} i g.

I de e de diec $\sqrt{n} \boxtimes a = e$, $(a = \sqrt{n}, \sqrt{n}, \sqrt{n} \boxtimes a = e, \sqrt{n} di a = g = a, _ee, i g < \sqrt{n}, he b \sqrt{n} d < \sqrt{n} d = e = \sqrt{n} \sqrt{n} \boxtimes a = e, \sqrt{n} \otimes \sqrt{n$

If he bhad haff diec ha a ge ea __ee, i g, i a ge ea __ee, i g, i a a hac in the set of the each of the decident of the decident of the set of th

The bha d hat $\Delta = 1007 \Delta i \Delta e_1$, ed hat A = 1000 A have a = 1000 A and a = 1000 A and A = 1000 A have A = 1

If the bina d fif di ectil Mag ee M of T e e the e tand di a ge e a ____eet i g, i M at a fi ice M ge e a M ice M ge e a M ice M he deci M he d

If he bha d haf di ec ha 🛛 di 🖾 ag ee 🖾 ha cha e e he e and di a ge e a __ee, i g, ha dhe 🖾 ha e , 🖾 i hi 10 da 🖾 ha ecei, haf he ha ha ka b dee_ed a 🖾 fai i g ha di ka da gi g i 🖾 di ie 🖾 ha cha e e he ge e a __ee i g. The bha d haf 🖾 e i i 🖾 7 🖾 Ma, he be e i, ed ha cha e e a d had he _ee i g i 🖾 f.

When a general set is given by the Charge is a state of the charge is

Sha eh \overline{A} de \boxtimes h \overline{A} i di id a, \overline{A} \overline{A} ge he h \overline{A} di g \underline{A} e ha 3% \overline{A} f he \underline{A} ha \underline{B} \overline{A} f he \underline{C} f \underline{A} \underline{A}

E ce, $f \overline{N}$ ci α _ \square a ce \square , \overline{N} ided i he ab \overline{N} e a ag a h, he c \overline{N} e e, af e i \square i g he \overline{N} ice \overline{N} f he ge e a _ ce i g \square add e \square , \overline{N} \overline{N} a \square a ed i he \overline{N} ice \overline{N} f ge e a _ ce i g \square \overline{N} add e \square , \overline{N} \overline{N} a \square

If a \mathcal{M} ice \mathcal{M} if g e e a ___ee i g d \mathcal{M} e \mathcal{M} \mathcal{M} ecif he \mathcal{M} \mathcal{M} ed e \mathcal{M} , \mathcal{M} \mathcal{M} d \mathcal{M} e \mathcal{M} \mathcal{M} c \mathcal{M} ____ \mathcal{M} i g f \mathcal{M} decide \mathcal{M} \mathcal{M} \mathcal{M} d be he d a he ge e a ___ee i g.

Where a general set is given in the contrast of the contrest of the contrest of the contrest of the contrest

The CM_{ra} ΔMa_{a} , ca_{a} , $a \in he_{1}$ be Mf_{a} , Mi_{a} is $\Delta Ma_{a} \otimes Ae_{a}$, ed_{a} , he_{a} ,

A e and di a ge e a ____ee i g \boxtimes ha, n_1 decide n_2 ___en e \boxtimes n_2 \boxtimes ecified i he n_1 ice n_2 a n_3 ce___en .

The M ice M f a ge e a _____ee, i g Δ ha, _____ee, he f M i g e i i e____en Δ

- (1) i Δha_{i} be adde i Δi_{i} i g;
- (2) i Δha $\Delta ecif$ he ace, date a d i shift he set i g;
- (3) $i \boxtimes a \boxtimes ecif he _a \boxtimes B be di \boxtimes a \boxtimes be _a he _ee i g;$
- (4) S, ecif he and eh a di g ech d da e f a a ha eh a de a di ha e e i di e di ha e di he $_ee_i$ i g;
- (5) I \boxtimes ha, \Re ide \Re he \boxtimes ha eh \Re de \boxtimes he i \Re _ eq i \Re a d e , a a i \Re ece \boxtimes \boxtimes \Re he _ R_{1} \Re _ eke a \bigotimes i \boxtimes edeci \boxtimes \Re \Re he _ eq e \boxtimes \Re be di \boxtimes h \boxtimes ed. Thi \boxtimes , i ci, e \boxtimes ha, a, (b, \Re , i _ ei), \Re , \Re \Re \boxtimes ed _ en ge, ei cha \bigotimes ef ga i a i \Re \Re \Re ha e ca i a \Re \Re he e \boxtimes i ci i g, i \boxtimes ha, \Re ide he \boxtimes ecific c \Re di i \Re \boxtimes a d c \Re , ac (if a) \Re he, \Re \Re \Re ed a \boxtimes a ci \Re a d, \Re e , e, ai he ea \boxtimes \Re a d effec \boxtimes \Re f he \boxtimes a e;
- (6) A di ec, \$\vec{n}\$, \$\vec{n}\$, e. i\$\vec{n}\$, __\$m age \$\vec{n}\$ \$\vec{n}\$ he \$\vec{n}\$ e i\$\vec{n}\$ __\$m age__\$\vec{n}\$, __\$m age__\$\vec{n}\$, __\$m age__\$\vec{n}\$, \$\vec{n}\$ e i\$\vec{n}\$, \$\vec{n}\$ a e i\$\vec{n}\$, \$\vec{n}\$ e i\$\vec{n}\$, \$\vec{n}\$ a e i\$\vec{n}\$, \$\vec{n}\$ a e i\$\vec{n}\$, \$\vec{n}\$ a e i\$\vec{n}\$, \$\vec{n}\$ a e i\$\vec{n}\$, \$\vec{n}\$ age \$\vec{n}\$, \$\vec{n}\$ age \$\vec{n
- (7) $I_1 \boxtimes ha_1 \otimes CM$ at the finite of the set of the
- (8) I \boxtimes ha, c n ai a c, ea \boxtimes a e__e, ha a \boxtimes ha ehn de \boxtimes hn ha \boxtimes igh, n a, e d a d. n e a, he __ee, i g \boxtimes ha, ha e, he igh, n a, n $n \in \mathbb{N} = \mathbb{N} = \mathbb{N}$ ie \boxtimes n a, e d a d. n e n he ibeha f a d, ha, \boxtimes ch n ie \boxtimes eed n be a \boxtimes ha ehn de;

(9) I \square has \square a e he i e a d, ace f \square he de i e \square f \square f \square \square f \square he e i g;

(10) I \boxtimes ha \boxtimes he a $_$ ha d e e ha e $_$ ha e \square ha e \square he \square he \square he \square he \square he $_$ he \square he \square he $_$ he \square he $_$ he \square he $_$ he \square he $_$ he \square h

If a ge e a ____ee, i g \boxtimes ha, di \boxtimes h e e e ci \Re \Re f di e ci \Re \boxtimes \Re \boxtimes , e : i \boxtimes \Re \boxtimes , he \Re i ce \Re f ge e a ____ee, i g \boxtimes ha, di \boxtimes ci \Re \boxtimes fi he ca dida e \boxtimes fi di e ci \Re \boxtimes a d \boxtimes , e : i \boxtimes \Re \boxtimes I, \boxtimes ha, a , ea \boxtimes i c, de, he fi , \Re \boxtimes i g:

(1) Pe
$$\Delta n$$
 a in a $\Delta \Delta$ chat chair chair backg n d, Δn k e e is cead n he a, n j e Δn is the set of the se

- (2) Whe he he/Mahe hall a cM ec ed e a iM Mai h he CM_{ra} a M he cM M_{ci} is Maha eh/Maha a d act a cM M_{ci} e M he CM_{ra} ;

(4)

(3) U $(e^{\Delta M} \mathcal{H} he \otimes i^{\Delta E})$, \mathcal{H} ided i hea, $(icab, e, i^{\Delta E})$ ig $(e^{\Delta \mathcal{H}} \mathcal{H} he \otimes a \otimes a^{\Delta E})$ and e_{2} , a^{A} , Δe_{2} , a^{A} , $a^{$

The i \boxtimes_{1} _e, a, \widehat{M} i g a, \widehat{M} \boxtimes ha, be i \boxtimes i i g, de he ha d \widehat{M} he a, \widehat{M} i g Sha eh \widehat{M} de \widehat{M} hi \boxtimes a, \widehat{M} e d, a h \widehat{M} i ed i \boxtimes i i g; \boxtimes he e he a, \widehat{M} i g \boxtimes ha eh \widehat{M} de i \boxtimes a ega, e \boxtimes \widehat{M} , \boxtimes ch i \boxtimes_{1} _e, \boxtimes ha, be i de i \boxtimes \boxtimes e a, \widehat{M} i de he ha d \widehat{M} i \boxtimes di ec, \widehat{M} \widehat{M} a, \widehat{M} e d, a h \widehat{M} i ed.

The i \square i $_$ en i \square ed b he \square ha eh \square de \square a h \square i e a \square he e \square \square a e d he ge e a $_$ ee i g \square ha \square \square a e he f \square \square a e d he ge e a $_$ ee i g \square ha \square a e he f \square \square a e d he ge e a $_$ ee i g \square ha \square a e he f \square \square a e d he ge e a $_$ ee i g \square ha \square a e he f \square \square a e d he ge e a $_$ ee i g \square ha \square a e he f \square \square a e d he ge e a $_$ ee i g \square ha \square a e he f \square a e d he ge e a $_$ ee i g \square ha e h a e

- (1) Na_ $e_1 M f_h e_1 M ;$
- (2) Whethe he M had M is ight, M
- (3) I dica in the children in the children in the children in the second is a second in the second is a second in the second is a second in the second seco
- (4) Da e $\Re f \boxtimes g$ i g $\Re f$ i $\boxtimes f$ _ e _ $\Re f$. a idi ; ;
- (5) Sig at $e(M \boxtimes a)$ M the i ci at I he i ci at M a e M what M a e M the M t
- (6) S, ecif i g he i be $M f \square ha e \square e$, $e \square e$ d b $\square ch$, M;

The i $\boxtimes_{1 \dots e_{1}}$ a M_{1} i g a M_{1} i g M_{1} $\boxtimes_{1a_{1}}$ be , aced a the M_{1} is i.e M_{1} the CM_{1} a M_{1} a $\boxtimes_{1a_{1}}$ the form a $M_{1a_{1}}$ is a $\boxtimes_{1a_{1}}$ the set i g a $\boxtimes_{1a_{1}}$ the set i $\boxtimes_{1a_{1}}$ the set i g a $\boxtimes_{1a_{1}}$ the set i $\boxtimes_{1a_{1}}$ the set i g a $\boxtimes_{1a_{1}}$ the set i $\boxtimes_{1a_{1}}$ the set i g a $M_{1a_{1}}$ the set i g a M_{1a_{1}} the $M_{1a_{1}}$ the set

Whe e he, i ci, a $i\boxtimes a ega$, $e\boxtimes 7$, $i\boxtimes ega$, $e = \boxtimes 7$, $i\boxtimes ega$, $e = \boxtimes 2$, a i e = 7, he $e\boxtimes 7$, a h= 7 i ed $b = \boxtimes 7$, $i\boxtimes 7$ if $i\boxtimes 7$ is M if $i\boxtimes 7$ is M is M if $i\boxtimes 7$ is M is M if $i\boxtimes 7$ is M if $i\boxtimes 7$ is M is M if $i\boxtimes 7$ is M if M is M is M if M is M if M is M if M is M if M is M is M if M is M if M is M if M is M is M if M is M if M is M if M is M is M is M is M if M is M is M if M is M is M is M is M if M is M is M is M if M is M is M if M is M is M is M is M if M is M if M is M. If M is M. If M is M if M is M. If M is M. If M is M. If M is M. If M is M is

Whe had d is g a g e e a ____ee i g, a ___ he di ec $\sqrt[47]{0}$, $\sqrt[3]{0}$ e _ i $\sqrt[37]{0}$ a d $\sqrt[36]{2}$ e a ie $\sqrt[37]{0}$, he bar a d $\sqrt[37]{1}$ d is c $\sqrt[37]{0}$ $\sqrt[36]{1}$ a g e d. The g e e a ____en age a d $\sqrt[37]{1}$ he $\sqrt[36]{1}$ and $\sqrt[36]{1}$ e $\sqrt[36]{1}$ e $\sqrt[36]{1}$ and $\sqrt[36]{1}$ e $\sqrt[36]{1}$ and $\sqrt[36]{1}$ e $\sqrt[36]{1}$ e

If a ge e a __ee i g i i i i of i e ed b b i a d i f i of e i i i i of i he chai __en i f he b i a d i f i of e i i of o

If a ge e a __ee i g i $\boxtimes c \Re$. e e d b he \boxtimes ha eh \Re de \boxtimes he _ $\boxtimes e_{-}$ e \boxtimes , he $c \Re$. e e $\boxtimes i_{-}$ in a e a e e $\boxtimes e_{-}$ a i e \Re c \Re d c he __ee i g. If \Re a ea \boxtimes \Re he \boxtimes ha eh \Re de \boxtimes a e i ab e \Re e e \boxtimes i a c a chai __e i, he a e da \boxtimes ha eh \Re de \square he \square a e \boxtimes \Re d c h a d a e i ab e \Re e e c a chai __e i, he a e da \boxtimes ha eh \Re de h a d a e i ab e \Re \Re b \Re) \boxtimes ha , e \boxtimes de \Re e he __ee i g.

I age e a __ee i g, if he chai __en \mathcal{M} he __ee i g \mathcal{M} , a e e a he __ee i g, \mathcal{M} ced e a __eki g he __ee i g i __e \mathcal{M} add e \mathcal{M} , \mathcal{M} ceed, \mathcal{M} i h \mathcal{M} add f \mathcal{M} e ha \mathcal{M} e ha \mathcal{M} f \mathcal{M} he a ha e h \mathcal{M} de \mathcal{M} i h \mathcal{M} i g igh \mathcal{M} , he a ha ha h \mathcal{M} de \mathcal{M} a h \mathcal{M} i g igh \mathcal{M} , he a ha ha h \mathcal{M} de \mathcal{M} and \mathcal{M} i h \mathcal{M} i g igh \mathcal{M} , he a ha h \mathcal{M} de \mathcal{M} and \mathcal{M} i h \mathcal{M} i g igh \mathcal{M} , he a ha ha h \mathcal{M} de \mathcal{M} and \mathcal{M} i h he __ee i g. If f \mathcal{M} a e ha h \mathcal{M} de \mathcal{M} a e h \mathcal{M} de \mathcal{M} a e i g h e e a g he chai __en a d c \mathcal{M} i e \mathcal{M} h he __ee i g. If f \mathcal{M} a e ha e h \mathcal{M} de \mathcal{M} a e i g h e e \mathcal{M} f \mathcal{M} e e a chai __en , he a e da \mathcal{M} ha e h \mathcal{M} de h \mathcal{M} di g he a g e \mathcal{M} i __e be \mathcal{M} f \mathcal{M} i g \mathcal{M} a e \mathcal{M} (\mathcal{M} he he i e \mathcal{M} \mathcal{M} b , \mathcal{M}) \mathcal{M} a. e \mathcal{M} de \mathcal{M} e he __ee i g.

The CM_{\perp} a $\Delta ha_{\perp} \Delta i_{\perp}$, $a_{\perp}e_{\perp}he_{\perp}$, $e \Delta M$, $M = 1, e \Delta M$

I he a i a ge e a __ee i g, he bha dhift di ec \sqrt{n} 🛛 a d bha dhift \square e i $\square \sqrt{n}$ \square \square \square he i $\square \sqrt{n}$ k d i g he a \square he ge e a __ee i g. Each i de e de di ec \sqrt{n} \square ha a $\square \sqrt{n}$, e \square a \square \sqrt{n} k e \sqrt{n} .

Di ec $\sqrt[3]{N} \otimes \sqrt[3]{Q}$, e : $i \otimes \sqrt[3]{N} \otimes \sqrt[3]{Q}$ a d \mathbb{Z} e $i \otimes \sqrt[3]{N} \otimes \sqrt[3]{Q}$ a d \mathbb{Z} e $i \otimes \sqrt[3]{N} \otimes \sqrt[3]{Q}$ f $\sqrt[3]{N} \otimes \sqrt[3]{Q}$ he ge e a __ee i g.

The chai __en Mf he __ee i g Mha_{a} , Mf Mf Mf i g, a Mf ce he i __be Mf Mha ehMf de Ma d, Mf ie Ma_{a} e di g he __ee i g i e Mf aMha ehMf de Mf af i g Mha eMf Mf af e Mf Mha ehMf de Mf a d, Mf ie Ma_{a} e di g he __ee i g i e Mf a d, he Mf a d __be Mf hei Mf i g Mha eMa a Mf i g Mha eMf de Mf a d, Mf i g Mha eMf Mf a eMf a eMf Mf

The ge e a ___ee i g Δ ha e __in _ e Δ e a ed b _ he Δ ec e a _ M he bMa d Mf di ec $M \Delta$ The __in _ e Δ Δ ha Δ a e he fM M i g cM e Δ

- (1) Ti_e, $e_i e_i a d age da \Re f_i he_e_i g a d a_e \Re \Re f_i he c \Re . e e;$
- (2) The a_e_1M he _ee i g chai _en a d he a_eM M he di ec $M \boxtimes \boxtimes$ e i $M \boxtimes \boxtimes$ and a d he \boxtimes a d M he \boxtimes iM = M age _en _en be \boxtimes a d M he \square e \square a he _ee i g;
- (3) The i _be ⊠Mf ⊠ha ehM de ⊠(i c, i di g dM__e⊠ic-i . e⊠ed ⊠ha ehM de ⊠a d M e ⊠ea⊠⊠ha ehM de ⊠(if a)) a d M ie⊠a, e di g he _ee i g, i _be Mf. M i g ⊠ha e⊠ he e e⊠e a d he e ce age⊠ Mf hei . M i g ⊠ha e⊠ M he M a ⊠ha e ca i a Mf he CM_gra fM each ⊠ha ehM de ;
- (4) The $\Re \operatorname{ce} X = \operatorname{ie} X$ and $\operatorname{ie} X = \operatorname{ie} X$.
- (6) Na_e \boxtimes \Re , \Re e \bigotimes a d \boxtimes i i e \Re he \Re i g;
- (7) O he cM is M be i ci ded a field i him A ice M f A field i if A

The cN = e Δha , $e \Delta e$ ha, $he cN = \Delta nf$, $he _in$, $e\Delta a e$, e, aco, $a e a d cN _nee$. Di $ec N \Delta a$, a = 1, a

00

The cN_{i} e e \boxtimes ha, e \boxtimes e ha, he ge e a __ee i g be cN_{i} d c ed cN_{i} i $N_{i} \boxtimes$ i , i fi a e $\boxtimes N_{i}$ i $N_{i} \boxtimes$ a e __ade. If he ge e a __ee i g i \boxtimes \boxtimes e ded N_{i} e $\boxtimes N_{i}$ i $N_{i} \boxtimes$ ca N_{i} be __ade beca \boxtimes N_{i} for ce__age e N_{i} in the \boxtimes ecia ci a __ \boxtimes a ce \boxtimes he cN_{i} e \boxtimes ha, ake ece \boxtimes \boxtimes a __ea \boxtimes e \boxtimes N_{i} e \boxtimes __en e_{i} g N_{i} di ec, e __i a e __i a e __i a e __i a e __i g N_{i} di ec, e __i a e __i a e __i a e __i a e __i g N_{i} di ec, e __i a e __i b, ic a N_{i} ce__ei a d e N_{i} i acc N_{i} da ce \boxtimes i h he a \boxtimes \boxtimes eg , a i $N_{i} \boxtimes$ N_{i} i \boxtimes i g i e \boxtimes N_{i} he , ace \boxtimes he e he CN_{i} ca " \boxtimes Ma e \boxtimes a e \boxtimes ed.

 $Re \boxtimes 7_1 \quad \text{i} i \boxtimes \boxtimes 7_1 \quad \text{i} \boxtimes 1 \boxtimes 1 \quad \text{eec} \quad i \quad g \quad i \quad c_1 \quad de \quad i \square 1 \quad di \quad a \quad e \boxtimes 17_1 \quad \text{i} \iint \boxtimes 17 \quad \boxtimes 17 \quad \boxtimes 17 \quad e \\ c_1 \quad c_2 \quad c_3 \quad c_4 \quad c$

O di a $e^{\Delta N_1}$, i^{M_2} a age e a ___ee i g Δha , be $a^{\Delta \Delta e}$ db ___M e ha N e ha f M he N_1 i g $\Delta ha e^{\Delta he}$ d b $\Delta ha e^{M_1}$ de $\Delta (i c_1 di g_1 hei)$, N ie Δa_1 e di g_ he ge e a ___ee i g.

S ecia $e \boxtimes \pi_1$ i π_1 a ge e a __ee i g \boxtimes ha be a $\boxtimes \boxtimes$ e ha $\boxtimes \pi_1$ hi d $\boxtimes \pi_1$ he π_1 i g igh \boxtimes he d b \boxtimes ha eh π_1 de \boxtimes (i c di g hei π_1 i e \boxtimes) a e di g he ge e a __ee i g.

0

Whe $\Delta ha = hM (de \Delta (i c_1 di g_M ie\Delta), M e a_he ge e a_ ee i g, he <math>\Delta ha_i e e ci\Delta e_hei M i g igh \Delta accM di g_M he_i be M f_M i g \Delta ha e ha, he e e e \Delta e_i Each \Delta ha e \Delta ha, ca M e_M i g igh.$

Sha e \boxtimes he $C = \prod_{i=1}^{n} a$ d \square if a_i is i = i = m, n = n, n = n,

S bjec, \sqrt{n} a d c \sqrt{n} di i \sqrt{n} a i \sqrt{n} c \sqrt{n} ia ce \otimes i h a , icab, e , a $\otimes \otimes$, eg , a i \sqrt{n} \otimes a d \sqrt{n} e i e e, $\otimes \sqrt{n}$ f he , i \otimes i g i , e $\otimes \sqrt{n}$ f he , ia ce \otimes he e , he C \sqrt{n} a i i $\otimes \sqrt{n}$ a e \otimes a e , i $\otimes \sqrt{n}$ di \sqrt{n} di \sqrt{n} di e , i $\otimes \sqrt{n}$ di e , i e e de , di e , i $\otimes \sqrt{n}$ a d \sqrt{n} he \sqrt{n} di e e de , di e , i $\otimes \sqrt{n}$ a d \sqrt{n} he \sqrt{n} di e e de , di e , i $\otimes \sqrt{n}$ a d \sqrt{n} he \sqrt{n} di e e de , di e , i $\otimes \sqrt{n}$ a d \sqrt{n} he \sqrt{n} i g \otimes ha e \otimes f \sqrt{n} a d \sqrt{n} he \sqrt{n} i g \otimes ha e \otimes f \sqrt{n} a e ha e ha di \sqrt{n} de \otimes

When he ge e a __ee i g c M Δ de Δ e a ed a __a Δ a Δ a c i M Δ , he e a ed a _ Δ ha eh M de Δ Δ ha . M a ici a e i _he . M i g if ΔM ecified i _he a __icable a Δ , eg _a i M ΔM . ΔM i g i _e ΔM f he _ ace Δ he e he c M _ M a i ΔM a e Δ a e _ i ΔM de ΔM a e ΔM a e

I acc/7 da ce \boxtimes i h, he a , i cab, e, a \boxtimes \boxtimes , eg, a i \Im \boxtimes a d, i \boxtimes i g, e \boxtimes Mf, he , ace \boxtimes he e, he $CM_{\perp n}$ a ' \boxtimes \boxtimes ha e \boxtimes a e, i \boxtimes ed, \boxtimes he e a \boxtimes ha eh \Re de \boxtimes ha, ab \boxtimes ai f $M_{\perp n}$ \Re i g f \Re a , a i o, a e \boxtimes \Re , i \Re , i \Re e \boxtimes i c, ed \Re , i \Re e \Re , i \Re agai \boxtimes \boxtimes ch e \boxtimes \Re , i \Re , a , i \Re e \boxtimes i , i \Re , a i \Re Mf \boxtimes ch e, i e, e, i e \boxtimes i c, i \Re b , he \boxtimes ha eh \Re de \boxtimes (i \Re , he i , i \Re i e \boxtimes) \boxtimes ha, i \Re be c \Re , ed i , he , \Re i g e \boxtimes , \boxtimes

0

 ∇M_i is a ge e a ____eee is \mathbb{Q}_i , ecM d he a___eMf he M_i e.

When a M_{\odot} in a ke a a __ee i g, a sha eh M de (i c) di g M ies) show has e he igh M_{\odot} show M_{\odot} end M_{\odot} case i g, a sha eh M de (i c) di g M ies) show he has e he igh M_{\odot} show M_{\odot} end M_{\odot} case is a constant of the show he has a constant of

0

Whe he i be $\Re f_{1} \Re e \boxtimes f \Re$ a dagai \boxtimes a $e \boxtimes \Re_{1}$ i \Re i $\boxtimes e_{1}$ a, he chai i \Re he be i g \boxtimes ha, be e i ed i \Re a addi i \Re a \Re e.

0

0

All fif he fille X be e cilled b he ge e a __ee i g fif X ha childe X of i e __X all X i a ag a ha (7), (8), (9), (11), (13) a d (15) i A ic e 63 fi __en e X e i ed b he all X ad_in X at e eg a if X fille A ic e fif All X for a if a childe X of the end X ad_in X at e eg a if X fille A ic e fif All X for a fille X of a childe X of a ell X, if X and X and

0

The chai __en M f he __ee i g Δ ha, be he d $e\Delta M$ Δ b, e f M decidi g Δ he he M M a $e\Delta M$ i M f he ge e a __ee i g ha Δ be a Δ a Δ Δ ha, be fi a a d Δ ha, be a M ced a he __ee i g a d ec M ded i he __in _ e Δ Mf __ee i g.

0

If he chai ______ Mf he _____ee, i g ha⊠ a dM b ⊠ abM , he . M i g e ⊠ , Mf a e ⊠ M_1 , Mf , he ____en a a ge e cM , i g Mf he . M e ⊠ If he chai ______ Mf he ____ee, i g Me ⊠ M a a ge e-cM , i g Mf he . M e ⊠ a ⊠ha e hM de M , M a e di g he _____ee, i g ⊠ hM cha e ge ⊠ he e ⊠ , a M ced b he chai ___en Mf he _____ee i g ⊠ha , ha e be e i, ed M e e e ⊂ M , i g Mf . M e ⊠ i ______edia e, af e ⊠ ch a M ce___ei , he chai _____en Mf he _______ee, i g ⊠ha, i______edia e, a a ge e-cM , i g Mf he . M e⊠

0

If cN_i i $gNf_i N \in \boxtimes i \boxtimes he da age e a __ee i g, he <math>e\boxtimes Af$ he cN_i i $g\boxtimes ha be ecN ded i he __in e \boxtimes Nf __ee i g a d he egi \boxtimes a i N ecN d Nf a e da <math>\boxtimes \boxtimes g$ ed b he a e da $\boxtimes ha$ ehN de $\boxtimes a d$ N ie $\boxtimes ha be ke$, a he CN_{a} a ' $\boxtimes dN_{a}$ is if N = iNd N = iNd

Sha eh i de \square_{eh} e a_i e h i i converse i g \square d i g he Ci \square_{e} a ' \square i \square i fiftice h \square \square fee i g \square fiftice h \square \square fiftice h \square fiftice h n \square fiftice h n \square fiftice h \square fiftice h n \square fiftic

Sha eh \mathbb{M} de \mathbb{M} h \mathbb{M} d diffe e $c_a \mathbb{M}$ e \mathbb{M} h \mathbb{M} d diffe e $c_a \mathbb{M}$ e \mathbb{M} ha e \mathbb{M} ha eh \mathbb{M} de \mathbb{M} h \mathbb{M} d diffe e $c_a \mathbb{M}$ e \mathbb{M}

Sha eh# $d \in M$ f diffe e , c a M e M a d , i g M a d , i g M a d , i g M a d , i g M f a c M

Where he are can i a i cu de an a early i h differe π i g igh Δ , he de a g a in the fraction of the area in the second state of the area is a fraction of the second state of the sec

The $Ci_{1,c}a$ $\Delta a_{1,c}$ i_{1} , i_{1} ceed i_{1} change i_{1} ab i_{1} gave, he Δa he Δa he Δa_{1} ight Δa_{1} ight Δa_{2} ight Δa_{2} is i_{1} in i_{1} in i_{2} ight Δa_{2} is i_{2} and i_{3} in i_{3} in i_{3} in i_{3} is i_{3} in i_{3} in i_{3} in i_{3} in i_{3} is i_{3} in i_{3} in i_{3} in i_{3} in i_{3} is i_{3} in i_{3} in i_{3} in i_{3} in i_{3} is i_{3} in i_{3} is i_{3} in i_{3} in

Where a charge Δi d \overline{M}_{e} e Δi is a d f \overline{M} e ig $\langle a X | \Delta A \rangle$ e g $\langle a \rangle i \overline{M} | \Delta A \rangle$ he $\langle i X | i g \rangle$ $\langle e X | M \rangle$ he $\langle a e X | A \rangle$ he e he $\Delta ha e X | M \rangle$ he $C = M_{e} a = \langle a X | A \rangle$ a $\langle a X | A \rangle$ e $\langle a X | A \rangle$ deci $\Delta M \rangle$ if $\Delta M \rangle$ e $\langle a X | A \rangle$ he charge $M \rangle$ h

The igh \boxtimes M \boxtimes ha ehM de \boxtimes M f a ce ai c \boxtimes \boxtimes ha b dee_led M ha e bee cha ged M ab M ga ed i he fM \subseteq M \boxtimes i g cM di iM \boxtimes

- 2. a cha ge \overline{M} f \overline{a} , \overline{M} , \overline{a} , \overline{M} f he \overline{M} ha e \overline{M} \overline{M} \overline{M} ha e \overline{M} \overline{M} f \overline{a} , \overline{M} he \overline{C} , \overline{a} \overline{M} f \overline{A} , \overline{M} he \overline{C} , \overline{a} \overline{M} f \overline{A} he \overline{C} , \overline{A} \overline{M} he \overline{A} he \overline{M} he \overline{C} , \overline{A} \overline{M} he \overline{A} he \overline
- 3. a $e_{\mathcal{M}} a_{\mathcal{M}} a_{\mathcal{M}} e d_{\mathcal{M}} a_{\mathcal{M}} a c_{\mathcal{M}} e d_{\mathcal{M}} a c_{\mathcal{M}} e d_{\mathcal{M}} a_{\mathcal{M}} a c_{\mathcal{M}} a_{\mathcal{M}} a_$
- 4. a edi c il $\mathcal{M} = \mathcal{M}$ a \mathcal{M} f a di ide d, efe e ce \mathcal{M} , \mathcal{M} e di ib i \mathcal{M} , efe e ce di i g j i ida i \mathcal{M} \mathcal{M} he $\mathcal{M}_{-\mathcal{M}}$ a , an ached \mathcal{M} is a eigenvector of a constant.
- 5. a addi ik7, e_k1 a k7 ed c ik7 k7 k8 a c k7 igh k2 k7 igh k2 k7 i g igh k2, a k7 i g i gh k2 i g i gh k2 i g i gh k2 i gh k3 i gh i gh (k3 i gh k3 i gh i gh k3

- 6. a e_ M_a M_b ed c M_b M_f igh M_b ecei e a_ M_b M_b a able b he CM_b a i a a io a o e c a ached M_b M_b a e M_b M_b ch c a M_b
- 7. a c ea in π f a e \boxtimes c a \boxtimes π f \boxtimes ha e \boxtimes \Im i h π i g i gh \boxtimes di \boxtimes i h i π i gh \boxtimes π he i i g e \boxtimes π ha e \boxtimes π ha c a \boxtimes
- 8. a $i_{\pi} = \pi \Delta a_{\pi} = \pi \Delta$
- 9. a it a cet of fight [M] is bac ibe for , or containing it, where [M], the contained of [M] is a contained of the co
- 10. a i c ea \mathbb{Z} e i he igh \mathbb{Z} a d i i geg \mathbb{Z} if \mathbb{Z} ha e \mathbb{Z} if a if he c a \mathbb{Z}
- 11. $e \boxtimes (c)$ i $g \Re f$, he $C \Re_{a} = \bigotimes$ hich ca $\boxtimes e \boxtimes \boxtimes$ ha eh \Re de $\boxtimes \Re f$ diffe e , c, a $\boxtimes e \boxtimes \bigotimes \Re$ bea , iabi, i , \Re diffe e , e , \boxtimes d i g, he e $\boxtimes (c)$ i g; a d
- 12. a $a_e_1 d_e_1$, $a ce_1 a$, $a ce_1 a$, $a f_1 he_1$, $a i \Delta n \Delta n f_1 hi \Delta \Delta e_1 i n$.

- 1. if he Chi____a ha⊠___ade a e de hiffe hia, ⊠ha ehhide ⊠i he ⊠a__e, hi hi in ha⊠ bhi gh back i⊠hi⊠ ⊠ha e⊠ hhi gh hi e __anke, a ⊠ac in ⊠hi a ⊠eo i ie⊠e cha ge i acchi da ce ⊠i h A ic e 32 he ehif, he chi hi g ⊠ha ehhide ⊠a⊠ defi ed i hi⊠ A ic e⊠ hif A⊠Mircia in ⊠ha, be i e e⊠ ed ⊠ha ehhide ⊠-;
- 2. if he CM__ra ha⊠ bM gh back i⊠ M⊠ ⊠ha e⊠ b a ag ee_e, M ⊠de a ⊠eo i ie⊠ e cha ge i accM da ce ⊠ i h A ic e 32 he eMf, hM de ⊠Mf ⊠ha e i e a iM M⊠ ch ag ee_e, ⊠ha, be i e e⊠ed ⊠ha ehM de ⊠-; M
- 3. I de a extirci i g in the a the Cin_tra , Suha entra de Xin the Xin bea tabili i a in the the Xin Xin tabili by e b in the Xin a entra de Xin the Xin tabili by e b in the Xin a entra de Xin the Xin tabili by e b in the Xin a entra de Xin the Xin tabili by e b in the Xin a entra de Xin the Xin tabili by e b in the Xin a entra de Xin the Xin tabili by the Xin a entra tabili tabili by e b in the Xin a entra de Xin the Xin a entra tabili tabili by the Xin a entra tabili tabili tabili by e b in the Xin a entra tabili tabil

Re M_1 , M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_2

Whe he CM_{ra} is $MhM daca M_{ee}$ is $g, i Ma_{a}$ is $a \otimes i$, $e \in M$ ice 45 da \otimes , $iM M he_{ee}$ is g if M_{a} is $a \otimes M$ he as $a \otimes M$ he as M he as $a \otimes M$ he as M he as

If he i __be $\Re f$ he $\Re i$ g \boxtimes ha e $\boxtimes e$ e $\boxtimes e$ ed b he \boxtimes ha e $\Re i$ de $\boxtimes i$ e di g $\Re a$ e d he __ee i g $i\boxtimes$ __ \Re e ha $\Re e$ ha f $\Re f$ he $\Re a$ i __be $\Re f$. $\Re i$ g \boxtimes ha e $\boxtimes \Re f$ ha c $a\boxtimes X$ he $C\Re_{-r}a$ __en h \Re d he c $a\boxtimes A_{-}ee$ i g $\Re f$ \boxtimes ha e h \Re de \boxtimes If \Re , he $C\Re_{-r}a$ \boxtimes ha \bigotimes_{i} hi fi e da $\boxtimes i$ f \Re_{-r} he \boxtimes ha e h \Re de $\boxtimes \Re$ ce agai $\Re f$ he __en e \boxtimes \Re be c \Re \boxtimes de ed a he __ee i g a d he dae a d , ace $\Re f$ he __ee i g i he f \Re_{-r} $\Re f$ a , b ic a \Re ce__ei . U \Re \Re ifica i \Re b , b ic a \Re ce__ei , he $C\Re_{-r}a$ __en h \Re d he c a \boxtimes _{-ee i g}.

If the e i $\boxtimes a = \boxtimes e cia_{i} e_{i} i e_{i} e_{i}$ b the time i $\boxtimes i g_{i} e \boxtimes M$ f the tace $\boxtimes he e_{i} he CM_{i} a$ ' $\boxtimes \square ha e \boxtimes a e_{i} \boxtimes e d_{i}$, $\boxtimes ch e_{i} i e_{i} e_{i} \boxtimes \square ha_{i}$, e. ai.

The \mathcal{H}_{i} ice \mathcal{H}_{i} c \mathcal{M}_{i} ee i g \mathcal{H}_{i} and en \mathcal{H}_{i} de \mathbb{M} be de i e ed \mathcal{H}_{i} , \mathcal{H}_{i} he \mathbb{M} he \mathbb{M} he \mathbb{M} he \mathcal{M}_{i} de \mathbb{M}_{i} , \mathcal{H}_{i} e, he ea.

The ficed eff a cate i g that, if he e e fitted i define i cate i he is a set of the field of the fitted eff a ge e a set i g the fitted i fitted

I addi $i\mathcal{N} = \sqrt{n} h\mathcal{N}$ de $\boxtimes \mathcal{M}$ f \mathcal{N} he c. a $\boxtimes \boxtimes \boxtimes \mathcal{M}$ f $\boxtimes n$ e \boxtimes , h \mathcal{N} de $\boxtimes \mathcal{M}$ f \mathcal{M} __e \boxtimes ic-i . e \boxtimes ed \boxtimes ha e \boxtimes a d \mathcal{N} e \boxtimes ea \boxtimes , i \boxtimes ed f \mathcal{M} eig \boxtimes ha e \boxtimes a e dee__ed \mathcal{M} be diffe e . c. a $\boxtimes \boxtimes \boxtimes \mathcal{M}$ f \boxtimes ha e h \mathcal{M} de \boxtimes

The \square ecia, \square ced e f \square \square i g i ca \square eq i g \square ha, \square he f \square he f \square \square i g ci o \square a ce \square a ce \square

- (1) Whe e he CM____ a i XM e X dM__eX ic-i . eX ed X ha eX a d M e XeaX iX ed fM eig X ha eX, i M a , M a , b a X ecia e XM, iM fi X X ha ehM de X i a ge e a ___ee i g, ei he Xe a a e M cM o e , M ce e e 12 ___M hX, M ___M e ha 20% M feach M f he e iX i g iXM ed dM __eX ic-i . eX ed X ha eX a d M e XeaX iX ed fM eig X ha eX M f he CM ___m a ;
- (2) Whe e he CM_ra 'A a MiM e dM_eNic-i eNed Ana eNa dM e NeaNiNed fM eig Ana eNa Mi i A i A a i Mi a i Mi i A i me_en ed Ni hi 15 Mi h M f M_rhe da e Mf a Mi a b he Nea i i eNa en a h Mi i Mf he Sae CM ci; Mi
- (3) Whe e \boxtimes_i is the a , \Re_i a b the \boxtimes eo i i e \boxtimes eg (a) \Re_i a the \Re_i is \Re_i the S a e C \Re_i ci the d \Re_i e \boxtimes_i is \Re_i a later than the \Re_i di g \Re_i the f \Re_i eig i the \Re_i \boxtimes_i \Re_i is g a d adi g.

The CN_ra Δ ha, e Δ ab, i Δ h he CN_rnr i Δ Pa CN_rninee Mf Beiji g Ji g e g C ea E e g CN., Li_ined (C ea E e g Pa CN_rninee) a d he Di Δ ci i e I Δ ec iN CN_rninee Mf CN_rnr i Δ Pa Mf Beiji g Ji g e g C ea E e g CN., Li_ined (C ea E e g Di Δ ci i e CN_rninee). I i ci e, he chai a Mf he bMa d Mf di ec N Δ Mf he CN_ra a d he Δ ec e a Mf he Pa CN_rninee Δ a be he Δ a en e Δ 7, a d N e f ... i ender Δ dec e a Δ ha, be a Δ g e d i cha ge N f Pa - e a ed Δ N k. E igible <u>set</u> be Δ Mf he Pa - CN_rninee ca jN he bMa d Mf di ec N Δ he bMa d Mf Δ e i Δ N a d he e age en ea rh N gh ega, N ced e Δ Δ hi e e igible Pa - e be Δ Mf he bMa d Mf di ec N Δ he bMa d Mf Δ e i Δ N he bMa d Mf Δ e i Δ N he e e a d Λ f ced e Δ

The i be \widehat{M} in \widehat{M}

The Pa C_{n-1} is the C_{n-1} a Δ_{n-1} is Δ_{n-1} in Δ_{n-1}

- (1) The \square e a d \square , e i \square he highting high increases a in the side i e \square a d \square icie \square in the Pa a d he S a e, deci \square in \square a d de \square of and e b he Pa Ce a Charlen e, he Pa Charlen e in the Mi ici a Pa Charlen a d he G \square e ici , he S a e in \square ed A \square e i \square in a d A \square in i \square a d he Beiji g E e g Highting Charlen he Charlen a A \square in \square he Charlen a d he Beiji g E e g Highting Charlen he Charlen a .
- (2) The adhe e of the i ci, exist the Pa e e cixi g eade while e official to the xelection off if e a i g and a get to the bound off diec if X and the e e cixe off the e at the add off official to the interval of the interval of the interval of the contract of the cixing the bound of the contract of the cixing the contract of the civit and the e e cixe off the e at the e at the civit and the e e cixe off the e at the e at the civit and the e e cixe off the e at the at the e at the e at the e at the at the e at the e at the at t
- (4) The ake fine example in the set of the

The $\boxtimes \mathcal{H} k \mathcal{H} f$ he Pa O gai a \mathcal{H} a d he $\mathcal{H} \boxtimes \mathcal{H}$ is $\mathcal{H} f \mathcal{H} f \mathbb{Q} \in f \mathbb{Q}$ have $\mathcal{H} = \mathcal{H} f \mathcal{H} f$ he CH $\boxtimes \mathcal{H}$ if $\mathcal{H} f$ he CH $\boxtimes \mathcal{H}$ he CH $\mathcal{H} f$ he

Di ec \sqrt{n} \boxtimes Ma_{i} be elected by the generating and \boxtimes ender ender \mathbb{A}_{i} if the ender \mathbb{A}_{i} is the ender \mathbb{A}_{i} of \mathbb{A}_{i} and \mathbb{A}_{i} ender \mathbb{A}_{i} is the ender

A di ec \mathcal{M} ' \boxtimes e \mathcal{M} f \boxtimes ice $c\mathcal{M}_{\mathcal{L}_{1}}$ ce \boxtimes f $\mathcal{M}_{\mathcal{L}_{2}}$ he da e he ake \boxtimes , he a $\mathcal{M}_{1} = c_{1}$, i, he o e e \mathcal{M}_{1} f \boxtimes ice \mathcal{M} f \boxtimes a d \mathcal{M} f di ec \mathcal{M} \boxtimes e d \boxtimes f a di ec \mathcal{M} \boxtimes e \mathcal{M} f \boxtimes e \mathcal{M} f \boxtimes e \mathcal{M} f \boxtimes e ice \mathcal{M} i \boxtimes f a di ec \mathcal{M} \boxtimes f e a \mathcal{M}_{1} ed, he \mathcal{M} igi a di ec \mathcal{M} \boxtimes ha c \mathcal{M} i e \mathcal{M} ca \mathcal{M} , he di ec \mathcal{M} ' \boxtimes d ie \boxtimes acc \mathcal{M} di g \mathcal{M} he a \boxtimes ad \mathcal{M}_{1} e a \mathcal{M}_{1} ed, he \mathcal{M} igi a di ec \mathcal{M} \boxtimes ha c \mathcal{M} i e \mathcal{M} ca \mathcal{M} , he di ec \mathcal{M} ' \boxtimes d ie \boxtimes acc \mathcal{M} di g \mathcal{M} he a \boxtimes ad \mathcal{M}_{1} i e \mathcal{M} ca \mathcal{M}_{1} i e \mathcal{M}_{2} ca \mathcal{M}_{1} i e \mathcal{M}_{2} ca \mathcal{M}_{1} is e ec ec ed di ec \mathcal{M} ' \boxtimes a \mathcal{M}_{1} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{1} ca \mathcal{M}_{2} ca \mathcal{M}_{2}

A di ec $\sqrt{n} \otimes \sqrt{n} \otimes \sqrt{n} \otimes \sqrt{n}$ be a 200 ord b ge e a __an age $\sqrt{n} \sqrt{n}$ he 20 i \sqrt{n} a 20 a 20 a 20 be 20 B, he \sqrt{n} a 1 __be \sqrt{n} f ge e a __an age 20 \sqrt{n} he 20 i \sqrt{n} __an age __en __en be 20 \sqrt{n} \sqrt{n} a 20 \sqrt{n} \sqrt{n} di ec \sqrt{n} 20 \sqrt{n} i he \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} di ec \sqrt{n} 20 \sqrt{n} i he \sqrt{n} a \sqrt{n} a \sqrt{n} a \sqrt{n} di ec \sqrt{n} \sqrt{n} a \sqrt{n} a

A di ec \Re eed \Re be that eh \Re de \Re he C \Re_{-1} a.

The di ec $\sqrt[3]{A}$ by the $\sqrt[3]{A}$, ec i. e. a d i di id a. , a e e , ec ed $\sqrt[3]{A}$ fi , fid cia d i ie a d d i ie $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ ca e a d di ige ce $\sqrt[3]{A}$ a da d a , ea i c $\sqrt[3]{A}$ i ce $\sqrt[3]{A}$ fi , the $\sqrt[3]{A}$ a da d e $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a , ea i ce $\sqrt[3]{A}$ fi , the $\sqrt[3]{A}$ a da d e $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a , ea $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ be $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ be $\sqrt[3]{A}$ fi $\sqrt[3]{A}$ be $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ a da d a $\sqrt[3]{A}$ be $\sqrt[3]{A}$ be

(a) ac his equation and i given d fai h i he i e equal if he circular a
$$a \boxtimes a \boxtimes h$$
 if e;

(b)
$$\operatorname{ac}_{1} \operatorname{fl}_{7} \operatorname{s}_{1} \operatorname{e}_{1} \operatorname{s}_{1} \operatorname{s}_{2} \operatorname{s}_{2}$$
;

(c) be $e \boxtimes \mathscr{H} \boxtimes b_i e_i \mathscr{H}_i$ he i $\boxtimes \boxtimes e_i \mathscr{H}_i$ he $a_{j,j}$ ica i $\mathscr{H} \mathscr{H} \sqcup i \boxtimes a_{j,j}$ ica i $\mathscr{H} \mathscr{H} i_j \boxtimes a \boxtimes \boxtimes e_j \boxtimes a_j$

(d) a
$$\mathcal{M}$$
 id ac_1 a a d \mathcal{M} e ia $c\mathcal{M}$ fic $\boxtimes \mathcal{M}$ fi e e \boxtimes a d $c\mathcal{M}$ fic \boxtimes i d ; ;

- (e) $di \mathbb{Z}_{c} \mathbb{M} \mathbb{Z}_{e}$ fi _ a d fai _ $hi \mathbb{Z}_{i}$ e $\mathbb{Z}_{i} \mathbb{Z}_{i}$ a c $\mathbb{Z}_{i} \mathbb{Z}_{i}$ h, he $i \mathbb{Z}_{i}$ e ; a d
- (f) $a_{1,n} \boxtimes ch deg ee \ Mf \boxtimes k_{1,n} ca e a d di ge ce a \boxtimes \underline{a}_{h} ea \boxtimes M ab be e ec ed \ Mf a e \boxtimes M Mf hi \boxtimes k M edge a d e e ie ce a d h M di g a di ec \ M \boxtimes h i a i \boxtimes ed \ M \underline{a}_{n} a$.

The i e iN N N_{i} a e a ca dida e a di e c N a d he \boxtimes i e N ice M \square ch ca dida e ega di g hi \boxtimes \boxtimes i i g e \boxtimes N acce, he N_{i} i a iN \boxtimes ha, be gi e N he N a e ha 7 da \boxtimes , iN N he da e a N i ed fN \boxtimes ch ge e a ee i g.

Whe end (example 1) he is ided by e.e. a call a difference of a difference of

If a di ec \Re i i ab, e \Re a, e d b \Re a d _ ee i g \boxtimes i e \boxtimes f \Re \boxtimes \Re c \Re \boxtimes a d \Re e i g \Re a d \Re e i g \Re a d \Re e d i ec \Re \boxtimes \Re a d \Re e d i e i g \Re hi i beha, f, he \boxtimes ha, be dee_ed a \boxtimes fai i g \Re c a \Re hi i d i e i i f fai i g \Re c a \Re hi i d i e i i f fai i g \Re c a \Re hi i d i e i i f fai i g \Re c a \Re hi i d i e i i f fai i g \Re c a \Re hi i d i e i fai i g \Re c a \Re hi i d i e i fai i g \Re c a \Re hi i d i e i fai i g \Re c a \Re hi i d i e i fai i g \Re c a \Re hi i d i e i fai i g \Re c a fai i g R a g

If he _e_be \overline{M} he diec $\overline{M} \boxtimes fa$, be $\overline{M} \otimes$ he _ini_m_d a \overline{M} e i e_f de \overline{M} a diec $\overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M}$, he \overline{M} ice \overline{M} e \overline{M} a diec $\overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M}$, he \overline{M} ice \overline{M} e \overline{M} a diec $\overline{M} \otimes \overline{M} \otimes \overline{M}$, \overline{M} , bech _eneffectient i, a e \overline{M} diec \overline{M} i \overline{M} a \overline{M} e diec \overline{M} i \overline{M} a \overline{M} fi, he aca c. The e_mi i g_e be $\overline{M} \otimes \overline{M}$ he bha d $\overline{M} \otimes \overline{M}$ d ch e e a e a \overline{M} di a ge e a _e e i g $\overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M} \otimes \overline{M}$.

Sa e f \mathcal{N} , he ci o _____ A a ce \mathbb{Z} effe ed \mathcal{N} i , he , ecedi g , a ag a h, he di ec \mathcal{N} ' \mathbb{Z} e \mathbb{Z} g a \mathcal{N} , ake \mathbb{Z} effec , \mathcal{N} de i e \mathcal{N} f hi \mathbb{Z} he e \mathbb{Z} g a \mathcal{N} , e \mathcal{N} , \mathcal{N} he b \mathcal{N} a d \mathcal{N} f di ec \mathcal{N} \mathbb{Z}

When a direc \sqrt{n} ' $\boxtimes e \boxtimes g$ a i \sqrt{n} , a ke $\boxtimes effec_{\sqrt{n}}$ hi $\boxtimes e_{\sqrt{n}}$ fixe, ice e i e \boxtimes , he direc \sqrt{n} $\boxtimes ha_{\sqrt{n}}$ choose e a \sqrt{n} a large e a \sqrt{n} a $\boxtimes fe$, where $M \boxtimes i$ h, he bins d with direc $\sqrt{n} \boxtimes Hi \boxtimes fid_{\sqrt{n}}$ cian d $\sqrt{n} \boxtimes a$ d $\boxtimes he C \boxtimes_{\sqrt{n}} a$ a d he $\boxtimes ha = hint d \boxtimes \boxtimes ha_{\sqrt{n}}$ of e i e affective e d with hi $\boxtimes e_{\sqrt{n}}$ with \mathbb{R}^{n} cice a d $\boxtimes i_{\sqrt{n}}$ be $\boxtimes i_{\sqrt{n}}$ i effective find a easily able e ind \boxtimes ecified b hi $\boxtimes A$, ice $\boxtimes M f A \boxtimes M$ cian inf.

⁰

The $CM_{ra} \otimes Ma_{ha}$ ha ei de e de di ec $M \otimes I$ de e de di ec $M \otimes ee$ $M \otimes ee$ $M \otimes ch$ di ec $M \otimes M$ he CM_{ra} ha $\boxtimes e \otimes M$ di ie $\boxtimes M$ he ha he di ec $M \otimes d$ ie \boxtimes ha $\boxtimes M$ e a i $M \otimes M$ i \boxtimes i h he $CM_{ra} = M$ i $\boxtimes B \otimes a$ ia \boxtimes ha ehM de \boxtimes (efe i g \boxtimes e a a e M agg ega e \boxtimes ch \boxtimes ha ehM de $\boxtimes MMMM$ de M e ha 5% M f he M a i _ be Mf = M i g \boxtimes ha e \boxtimes) ha _ eh hi de hei i de e de M bjec i e j dg e \boxtimes a d \boxtimes i \boxtimes ie \boxtimes he e i e e \boxtimes Mi de e de ce b he i \boxtimes i g $= \otimes M$ f he , ace \boxtimes he e he CM_{ra} i \boxtimes \boxtimes ha e \boxtimes a e \boxtimes a d \boxtimes i \boxtimes de.

U $(e \Delta M)$ he $\otimes i \Delta e$, M ided i $hi \Delta \Delta e c$ iM, he e.e. a M i ΔM $\Delta \Delta e$, M i Cha, e 14 M f $hi \Delta A$ ic $e \Delta M$ f $A \Delta M$ f i A $A \Delta M$ f i A A M he is a final if ΔA is a d M b ig a iM ΔM f i defedee defedee diec M ΔA

No example A for e-hid_e-be and the formal of the error of a double of a double of the bound of the bound of the error of a formal of the bound of the error of a formal of the error of t

 $A_{i,j}ea \boxtimes \mathcal{H} e \mathcal{H} f_{i,j}he i de e de di ec_{i} \mathcal{H} \boxtimes \mathcal{H} f_{i,j}he C \mathcal{H}_{i,j} a \square a_{i,j} \mathcal{H} di a i_{i,j} e \boxtimes de i H \mathcal{H} g K \mathcal{H} g.$

A i de e de di ec \sqrt{n} Δ ha, ha e he Δ a_e, e $2\sqrt{n}$ f \sqrt{n} fice a Δ \sqrt{n} he di ec \sqrt{n} Δ \sqrt{n} he $C\sqrt{n}$, a d 2 he be e e e e e e e e i \sqrt{n} e i \sqrt{n} he e $2\sqrt{n}$ e ha he c \sqrt{n} Δ eo i e e Δ Δ ha, be \sqrt{n} e ha Δ e a Δ

The $CM_{ra} = \Delta ha_{1} fM_{ra} a \otimes M$ ki g $(e \otimes M$ i de e de di ec $M \otimes \Delta$ hich $\otimes i_{1} \otimes A$ ecif he a ifica iM, $M_{ra} a M$, $e_{1}e_{1}a a M$, $e_{1}e_{2}a d e_{1}a d e_{1}a d a d M$ iga $M \otimes A$ is a d M is d M is a d M is d M is a d M is d M is a d M is

 $Ma_i \in \boxtimes e_i a_i g_i \overline{N}^i de_i e_i de_i de_i M \boxtimes A_i hch a e_i \overline{N}^i e_i e_i e_i hi \boxtimes \boxtimes A_i be dea_i \boxtimes A_i h accin di g_i N he e_e_a __a \boxtimes A_i \otimes A_i (A_i g_i e \boxtimes N f_i he __ace \boxtimes he e_i he C N __c a_i M \boxtimes A_i e \boxtimes A_i e_i \boxtimes e d.$

The CM_{a} Δa_{a} Δ

The chai __en a d ice chai __en $(\overline{N} \ ice chai __en)$ \overline{M} he b \overline{N} a d \overline{M} di ec $\overline{N} \boxtimes \boxtimes$ ha, be e, ec, ed a d e_ \overline{M} ed b __ \overline{M} e ha \overline{N} e ha f \overline{M} f a, he di ec $\overline{N} \boxtimes$ The chai __en a d ice chai __en $(\overline{N} \ ice chai __en)$ \overline{M} he b \overline{N} a d $\overline{\mathbb{M}}$ ha, $\overline{\mathbb{M}}$ e a e __ \overline{M} f he e ea \boxtimes a d __en be e-e, ec, ed \overline{N} he e , i \overline{M} hei e _ $\underline{\mathbb{M}}$

The bha d haf di ec ha e ci Δe e ci Δe he fhat is g fi c i ha d ha e Δe

- (1) \sqrt{n} be explored by effinitive in good find the end of the explored in \sqrt{n} in \sqrt{n} the general equation is \sqrt{n} the end of the en
- (2) $\sqrt{9} i_{1} e_{1} e$
- (3) $\sqrt{a} \operatorname{decide} \sqrt{a} \operatorname{he} \operatorname{CM}_{a} a \operatorname{d} a \operatorname{d} i \cdot \operatorname{e}_{a} a \operatorname{d} a$
- (4) $\sqrt{n} f \sqrt{n} a_e$ he a a_i fi a cia b dge Δa d fi a acc $\sqrt{n} \sqrt{n} \sqrt{n} f_i$ he $C \sqrt{n} a_i$;
- (5) $\sqrt{2} f \sqrt{2} = 10^{\circ} a_{1} e_{1} he C \sqrt{2} = 10^{\circ} a_{1} \sqrt{2} f \sqrt{2} h \sqrt{2} e_{1} he C \sqrt{2} he C \sqrt{2} e_{1} he C \sqrt{2} he C \sqrt{2} e_{1} h$

(8)
$$\sqrt{2} f \pi a_e$$
, a $\Delta f \pi$ he $C \pi_{e}$ a ' $\Delta \Delta b \Delta a_i$ a c, i Δa_i if Δa_i chase if $\Delta h a e \Delta f f_i$ he $C \pi_{e}$;

- (9) \boxtimes i hi he \boxtimes hi? i ed b he ge e a __ee i g, $\[mathbb{N}\]$ decide, a _ hi g $\[mathbb{N}\]$ he \square he \square $\[mathbb{Ch}\]$ can be a d \boxtimes a d d \boxtimes a d a d \boxtimes a d d a d a d a d a d a d a d

- (13) $\sqrt{n} f \sqrt{n} = \frac{1}{n} a_e he ba \Delta c_a age_o, \Delta \Delta e_a f he C \sqrt{n} ;$
- (15) $\Re f \Re = m a e he \boxtimes \Re c k \Re i \Re i c e i e a \Re f he C \Re = \pi a ;$
- (16) M_{a} age i M_{a} if M_{a} if M_{a} if M_{a} e M_{a} he M_{a} ;
- (17) \mathcal{M} , \mathcal{M} \mathcal{M} he best a d \mathcal{M} f di ec $\mathcal{M} \boxtimes \mathcal{M}$ he a, \mathcal{M} is a constant of the according for the field of the constant of the constant
- (18) \sqrt{n} in \mathbb{Z} in \sqrt{n} in \mathbb{Z} in \sqrt{n} in
- (19) $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ e, ace, he di ec $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$, e. $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ h $\sqrt{3}$, e. $\sqrt{3}$ $\sqrt{3$
- (20) \overline{M} e ie \overline{M} a d a , \overline{M} e he __e e \overline{M} he $C\overline{M}$ __ a ' \overline{M} e e a g a a ee \overline{M} hich a e \overline{M} c \overline{M} e ed b A ic e 64 f \overline{M} e ie \overline{M} a d c \overline{M} \overline{M} de a i \overline{M} a a g e e a __e e i g;
- (21) Whe Wa have a have ide to he and a dining a i e eg a in a de a intervention in the intervention of the end of the en
- (22) i de e_inig he 🛛 b 🖾 a ia 🕅 e a i 🕅 a a d_an age_on i 🖾 e 🖾 Mf he C 🕅_pa , he b $\overline{N}a$ d $\overline{M}f$ di ec \overline{N} $\boxtimes a$ d_an age_on , ea_n $\overline{M}ha$, fi 🖾 $\overline{M}eek \overline{M}$ i i \overline{N} $\boxtimes f \overline{M}_phe Pa C \overline{M}_phi$, he C \overline{M}_pha . The \overline{M} b $\overline{M}a$ ia \overline{M} e a i \overline{M} a d_an age_on , i $\overline{M}a$ e $\overline{M}f$ he C \overline{M}_pha i c, de b \overline{M}_p , i_ined \overline{M} .
 - a. De $e_{M} _ e_{1} \boxtimes a e gie \boxtimes a d _ e gii _ e _ e d \boxtimes g e _ e d e e_{M} _ e_{1}$, $a \boxtimes M f$ he $CM _ e a$;
 - b. the bill $e^{\Delta A}$, $a \Delta a d B$, $e a_i B$, $a \Delta b$,
 - c. i ci a a d di ec il 7 a il 2021 e a i g 17 fi a cia e \boxtimes i ci i g, a 2022 e a i g 17 fi a cia e \boxtimes i ci i g, a 2022 e a i a \mathbb{A} fe a il 7 a d \boxtimes b \boxtimes a ia i e \mathbb{A}_{-} e a i 7 a d \boxtimes b \boxtimes a ia i e \mathbb{A}_{-} e a i 7 a d \boxtimes b \boxtimes a ia i e \mathbb{A}_{-} e a i 7 a d \boxtimes b \boxtimes a ia i e \mathbb{A}_{-} e a i 7 a d \boxtimes b \boxtimes a ia i e \mathbb{A}_{-} e a i 8 a d \mathbb{A}_{-} e a d
 - d. he $_e_1$ ge, di $i \boxtimes N$, cha ge $Nf c N \setminus N$ a d di $\boxtimes N_1 \setminus N$ he $C N _ ra$;
 - e. $i \boxtimes A = e a_i i g_h = e_{n-1} = a_i i a_i$, $e = i \boxtimes A = a_i$, $a = a_i \boxtimes A = a_i$, $a = a_i$
 - f. \square b \square a ia a d i ci a i \square b \square e a i g \square he i e e \square \square \square f he e \square \square \square d eed \square be b \square gh \square f he a b \square i \square ;

- g. \square b \square a i a a d i ci a a ge_e, \square e a i g % he C %_r a ' \square % i i ca e \square % \square bi i a d \square % C i a \square \square \square \square i ci a a ge_e \square \square g ifica \square \square \square i ci a d \square abi i $_$ ei e a ce;
- h. \square b \square a ia a d i ci a i \square a \square b \square e \square be e \square ed \square he e e a g \square e $_$ e a d \square e i \square a h \square i ie \square a d
- i. M he in the ed he is M, e.e., a d de e in a in M he Pa CM min ee.

The ability $e_{a} \in \boxtimes M$ for hM is $e \in ci \boxtimes ed b$, he bills dM for $e \in M \boxtimes M$ a $a \boxtimes a_{a} \otimes M$ for M a $a \boxtimes e_{a}$, M for M a $a \boxtimes e_{a}$, M for $a \boxtimes a_{a} \otimes M$ a $a \boxtimes e_{a}$, M for M for M a $a \boxtimes e_{a}$, M for M for M a $a \boxtimes e_{a}$, M for M for M for M a $a \boxtimes e_{a}$, M for M

E ce, fN, he bNa d e $\boxtimes N$, iN $\boxtimes i$ e \boxtimes ec, Nf, he __e, e $\boxtimes \boxtimes$ ecified i , a ag a h \boxtimes (6), (7) a d (14) \boxtimes hich \boxtimes ha, be, a \boxtimes ed b __N e, ha $\bigotimes N$, hi d $\boxtimes N$ f, he di ec N \boxtimes , he bNa d e $\boxtimes N$, iN \boxtimes i e \boxtimes ec, Nf a, N he __e, e \boxtimes __e, be, a \boxtimes Ed b __N e, ha N e ha f M he di ec N \boxtimes

0

The bill d inf di ec in \boxtimes Ma, find the generative is the standard formula of the standard formula in the standard formula i

The bina d inf di ec in \square_{n} and \square_{n} \square_{n} ecia i ed cin \square_{n} ee \square ch a \square the S a egic Cin \square_{n} ee, A di Cin \square_{n} ee, Re \square_{n} e a inf a d Nin \square_{n} a inf Cin \square_{n} ee \square ad i \square_{n} the bina d inf di ec \square_{n} \square_{n} deci \square_{n} in \square_{n} e

Each \boxtimes ecia i ed c $\Re_{n,n}$ ee i \boxtimes ei \boxtimes i \Re \boxtimes be i \Re he bit ad iff di ec i \Re \boxtimes a di $\boxtimes_{n,n}$ be \boxtimes a e c \Re \boxtimes \boxtimes ed iff di ec i \Re \boxtimes A \bigotimes g \boxtimes hich, he giff i _____ en be \boxtimes i he A di $C\Re_{n,n}$ ee a d Re_m e a i \Re a d N $\Re_{n,n}$ ai \Re $C\Re_{n,n}$ ee \boxtimes ha, be i de e de di ec i \Re \boxtimes A ea \bigotimes \Re e _____ be iff he A di $C\Re_{n,n}$ ee \boxtimes ha, be a i de e de di ec i \Re \boxtimes A ea \bigotimes \Re e _____ be iff he A di $C\Re_{n,n}$ ee \boxtimes ha, be a i de e de di ec i \Re \boxtimes A ea \bigotimes \Re e _____ be iff he A di $C\Re_{n,n}$ ee \boxtimes ha, be a i de e de di ec i \Re \boxtimes e = e de di ec iff e a di ec iff a cia _____ an age_en e e i \boxtimes . The bit ad iff di ec iff $\boxtimes_{n,n}$ addi iff a \boxtimes ecia i ed c $\Re_{n,n}$ are independent of a diff di ec iff \boxtimes \boxtimes ha e i \boxtimes i g c i _____ ma e he \boxtimes of e e i i ec iff each \boxtimes ecia i ed iff e ecia i ed i ec iff each \boxtimes ecia i ed c i $\Re_{n,n}$ ee \boxtimes

I called \boxtimes he e he e ec ed a i e \Re fi ed a \boxtimes e \boxtimes fi ed a {\boxtimes} e {\boxtimes} fi fi ed a \boxtimes e \boxtimes fi ed a {\boxtimes} e {\boxtimes} fi fi ed a \boxtimes e \boxtimes fi ed a {\boxtimes} e {\boxtimes} fi fi ed a {\boxtimes} e {\boxtimes} fi fi ed a \boxtimes e \boxtimes fi ed a {\boxtimes} e {\boxtimes} fi fi ed a {\boxtimes} fi ed a { $\boxtimes} fi$ ed a {

The e _____fi ed above \boxtimes di \boxtimes $M \boxtimes$ a – efe ed Mi hi \boxtimes A ic e efe \boxtimes M (a _____M g M he hi g \boxtimes), a \boxtimes fe i g ce ai i e e \boxtimes \boxtimes i above \boxtimes b M i c, di g M i \boxtimes M i g M fg a a e e \boxtimes b \boxtimes a Mffi ed above \boxtimes

The a idi $\Re f$, a $\boxtimes ac_i \Re \boxtimes ega$ di g fi ed a $\boxtimes \boxtimes e \boxtimes di \boxtimes \Re \boxtimes a$, b he $C \Re_{-ic_i} a = \boxtimes aa_i$, \Re be affected d e $\Re a$ b each $\Re f$ he fi \boxtimes , a ag a, h $\Re f$ hi $\boxtimes A_i$ icte.

The chai $__{ah}$ Mf he bMa d $Ma_{...}$ e e ciMe he f $M_{...}$ $MM_{...}$ i g fi $c_{,i}M$ Ma d $M_{...}$ $MM_{...}$ e Ma

(1) \sqrt{n} , e $\Delta de \sqrt{n} e ge e a _ee, i g \Delta a d \sqrt{n} c \sqrt{n} e e a d e \Delta de \sqrt{n} e _ee, i g \Delta \sqrt{n} f he b \sqrt{n} a d \sqrt{n} f di ec \sqrt{n} \Delta f$

(2)
$$\sqrt{n}$$
, \sqrt{n} e a d check he i_n e_n a \sqrt{n} f e Δn , \sqrt{n} he by a d off di ec \sqrt{n} Δn

- (3) $\sqrt{N} \boxtimes g \ N \ \square ha \ e \ ce \ ifica \ e \ \square ha \ d \ ce \ ifica \ e \ \square a \ d \ N \ he \ \square e \ i \ ie \ \square i \ e \ \square b \ he \ C \ N \ \ A \ a \ ;$
- (4) \Re ga i e he \Re _m a \Re \Re f a \Re Ω r e Ω a d Ω \Re f e a \Re \Re he b \Re a d \Re f di ec \Re Ω
- (5) $\sqrt{n} \boxtimes g = \sqrt{n} =$
- (6) \sqrt{N} e e ci Δe he \sqrt{N} e Δa d fi c \sqrt{N} $\Delta a \Delta a$ he ega e e Δe a i.e;
- (7) \Re \Re in a e ca dida e \boxtimes f \Re \boxtimes c e a \Re he b \Re a d \Re f di e c \Re \boxtimes _e be \boxtimes a d chai _e \Re f he \boxtimes ecia i ed c \Re _____i e i de he b \Re a d \Re f di e c \Re \boxtimes
- (8) \overline{M} , \overline{M} e \overline{M} eg, a \overline{M} , \overline{M} i \overline{M} M a \overline{M} M k e \overline{M} , \overline{M} M f he c \overline{M} _pa ' \overline{M} \overline{M} e i \overline{M} __m age_e, a d, \overline{M} ide g ida ce \overline{M} i i \overline{M} , \overline{M} i \overline{M} i \overline{M} if he e \overline{M} , i \overline{M} \overline{M} M f he b M a d M f di ec \overline{M} \overline{M} ,
- (9) i ca⊠e %ffe_enge c %ff ca a⊠ %7 hic a, a di⊠a⊠e ⊠a d %7 he f%7 ce __enje e, e e ci⊠e he ⊠ ecia, igh, %ff di⊠ %⊠a %7 e he C%7_ra '⊠ affai ⊠ ha a e i i e ⊠ih he e i e_en ⊠%ff, a⊠ ⊠a d i e e⊠⊠ %ff he C%7_rra, a d e %7, %7 he b%7 a d %ff di ec %7 ⊠a d he ge e a __ee, i g af e ⊠a d⊠;
- (10) *N* ac, he, a *M* f *M* ∈ ⊠*M* f he b*N* a d *M* f di ec *M* ⊠ ⊆ h da e *M* f he b*N* a d *M* f di ec *M* ⊠ he he b*N* a d *M* f di ec *M* ⊠ *M* i ⊠ E⊠ *M* ; a d
- (11) When finctive $M \boxtimes a$ d, $M \boxtimes e \boxtimes a$, hW independent d b, he ta $\boxtimes A$ and $M \boxtimes a$ and $M \boxtimes a$ defined by $M \boxtimes A$, $h \boxtimes A$, h \boxtimes A, $h \boxtimes A$, $h \boxtimes A$, h \boxtimes A, $h \boxtimes A$, $h \boxtimes A$, h \boxtimes A, h

The ice chai $__{an}$ \boxtimes ha, a \boxtimes \boxtimes he chai $__{an}$ \Re f he b \Re a d \Re f diec \Re \boxtimes i \boxtimes \Re k. Whe he chai $__{an}$ i \boxtimes ab e \Re d \Re d \Re d \Re e Chai $__{an}$ i \boxtimes ab e \Re d \Re d \Re e Chai $__{an}$ i i i e Chai $__{an}$ i e ha \bigotimes \Re e ha \Re e ha i e Chai $__{an}$ i e Chai $__{an}$ i e ha \Re e ha i e Chai $__{an}$ i e ha i e Chai $__{an}$ i e ha i e Chai $__{an}$ i e ha i e ha i e Chai $__{an}$ i e Chai $__{an}$ i e ha i e ha i e Chai $__{an}$ i e ha i e ha i e Chai $__{an}$ i e A i e ha i e Chai $__{an}$ i e a di e Chai $__{an}$ i e A i e ha i e Chai $__{an}$ i e A i e ha i e Chai $__{an}$ i e A i e ha i e Chai $__{an}$ i e A i e A i e ha i e Chai $__{an}$ i e A i e A i e ha i e Chai $__{an}$ i e A i

The bhad_ee i g⊠i c, de eg a _ee i g⊠a de ahadi a _ee i g⊠

Reg a __ee i g \boxtimes \Re f he b \Re d \Re f di ec \Re \boxtimes \boxtimes ha, be he d a ea \boxtimes \boxtimes ice a ea. Mee i g \boxtimes \Re f he b \Re a d \Re f di ec \Re \boxtimes \boxtimes ha, be c \Re e ed b he chai __e \Re f he b \Re a d b gi i g a \Re ice \Re a, di ec \Re \boxtimes a d \boxtimes , e i \boxtimes \Re e da \boxtimes bef \Re e he __ee i g i \boxtimes he d.

The Pa C_{n} chai e, chai a ma ehr de hr di g r e h G0.02520 84.5128 29.6igh \square e h G0.02

U (e^{IXX}) he [M] ided i M he a (c,e^{IX}) he ei , e^{IX7} iM [M] he M d M d i ec M [X] he (a^{IX}) e ha M e ha f M f a he di ec M [X]

 $A \boxtimes f \widehat{M} \quad he : \widehat{M} i g \widehat{M} \quad a \ b \widehat{M} a \ d \ e \boxtimes \widehat{M} i \widehat{M} \quad i \widehat{M} \quad e \ a \ ca \boxtimes f \widehat{M} \quad a \ ca \boxtimes f \widehat{M} \quad a \ ca \boxtimes \widehat{M} \quad i \widehat{M} \quad e \ a \ a \ ca \boxtimes \widehat{M} \quad i \widehat{M} \quad e \ a \ ca \boxtimes \widehat{M} \quad i \widehat{M} \quad e \ a \ ca \boxtimes \widehat{M} \quad a \ ca \ ca \boxtimes \widehat{M} \quad a \ ca \boxtimes \widehat{M} \ a \ ca \boxtimes \widehat{M} \quad a \ ca \ ca \boxtimes \widehat{M}$

0

The diec $\sqrt{N} \boxtimes \mathbb{N}$ ha, a, e d a b \sqrt{N} a d__ee i gi e $\mathbb{N}7$. If a diec $\sqrt{N} \boxtimes \mathbb{N}$ ha, e d f \sqrt{N} a ea $\mathbb{N}7 \boxtimes \mathbb{N}$, he _en a, \sqrt{N} a \sqrt{N} he diec \sqrt{N} i \boxtimes i g \sqrt{N} a, e d \sqrt{N} hi \mathbb{N} beha f. The a h \sqrt{N} i a \sqrt{N} , e, e \mathbb{N} ha, c \sqrt{N} ai he a_en \sqrt{N} f he e e \mathbb{N} e ai e, he _en e \mathbb{N} e ed. \mathbb{N} e \sqrt{N} f a h \sqrt{N} i a \sqrt{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \sqrt{N} f \mathbb{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \sqrt{N} \mathbb{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \sqrt{N} \mathbb{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \sqrt{N} \mathbb{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \sqrt{N} \mathbb{N} a d a idi e i \sqrt{N} . I \mathbb{N} ha, be \mathbb{N} g ed \mathbb{N} a d a idi e i i ci a.

The a, M_1 ed diec $M_1 \otimes M_2$ a, e d \otimes he __ee i g \otimes ha, e e ci \otimes he diec $M_2 \otimes d$ ie $\otimes \otimes$ i hi he a h M_2 i ed $\otimes M_2$ e. If a diec $M_2 \otimes M_2$ a, e d a b M_3 d __ee i g i e $\otimes M_2$ a d d $M_2 \otimes M_2$ a, M_1 a e e \otimes a i e M_3 , e d he __ee i g, he M_2 he \otimes he \otimes ha, be dee __ed M_2 ha e \otimes ai ed he M_1 i g igh \otimes i he __ee i g.

 $The b \ensuremath{\mathscr{H}} a \ d \ \begin{tabular}{c} e b \ \ensuremath{\mathscr{G}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{G}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} b \ \ensuremath{\mathscr{H}} a \ \ensuremath{\mathscr{H}} b \ \ensure$

P 17 ided ha he di ec 17 \boxtimes ca fi , e e \boxtimes hei 17 i i17 \boxtimes a he e a 17 di a bha d ee i $g\boxtimes$ \boxtimes ch e i $g\boxtimes$ ca be he d b e a \boxtimes 16 d i e b ha d, 160, 161 if 7 he e a \boxtimes 16 ch en i ca i17 a d e \boxtimes 7, 167 d be a \boxtimes 267 d be a d

The bina d inf di ec $i\pi \boxtimes \boxtimes ha$, kee __in, $e \boxtimes inf i \boxtimes deci \boxtimes inf \otimes inf$, he __en $e \boxtimes di \boxtimes h \boxtimes da$, he __ee, i g. The di ec $i\pi \boxtimes \boxtimes h$ in a ded he __ee, i g. The di ec $i\pi \boxtimes \boxtimes h$ in a ded he __ee, i g.

The di ec $\sqrt{n} \boxtimes \boxtimes ha$, be e $\boxtimes \sqrt{n} \boxtimes he$ eff he deci $\boxtimes \sqrt{n} \boxtimes \sqrt{n}$ f, he binad \sqrt{n} f di ec $\sqrt{n} \boxtimes \sqrt{n}$ where a e $\boxtimes \sqrt{n}$, in \sqrt{n} f he binad \sqrt{n} f di ec $\sqrt{n} \boxtimes \sqrt{n}$ is in a in f he a $\boxtimes \boxtimes \mathbb{A}$ ad in i $\boxtimes \mathbb{A}$ a i. e eg a in $\boxtimes \sqrt{n}$ he A ic e $\boxtimes \sqrt{n}$ f A $\boxtimes \sqrt{n}$ cia in , he eb ca \boxtimes g \boxtimes in $\boxtimes \sqrt{n} \boxtimes \sqrt{n}$ he Cin_ma, he di ec $\sqrt{n} \boxtimes \sqrt{n} \sqrt{n}$ he \sqrt{n} if $\vee \sqrt{n} \otimes \sqrt{n}$ he Cin_ma, he di ec $\sqrt{n} \boxtimes \sqrt{n} \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n}$ he cin_ma, he di ec $\sqrt{n} \boxtimes \sqrt{n} \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n}$ he cin_ma, he di ec $\sqrt{n} \otimes \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n} \otimes \sqrt{n}$ he $\sqrt{n} \otimes \sqrt{n} \otimes \sqrt{n}$ he eadiec $\sqrt{n} \otimes \sqrt{n} \otimes$

The $_i_1$ e \boxtimes if the Bina d \boxtimes ha, cin \boxtimes \boxtimes if the fine fine fine in g:

- (1) da e a d e e $\Re f$ he _ce i g a d he a_e $\Re f$ he c \Re e e;
- (2) he a_e M he Diec \mathcal{M} , e \mathbb{Z} e ad a_e \mathcal{M} Diec \mathcal{M} (a, \mathcal{M} e) beiga, \mathcal{M} ied \mathcal{M} a, ed \mathcal{M} he \mathcal{M} he \mathcal{M} he \mathcal{M} behaf;
- (3) the age da;
- (4) he ari Mi Mi is the contract of the contra
- (5) he M is <u>____b</u> hMd M f each e \mathbb{M}_1 , iM a d he e \mathbb{M}_2 , (he e \mathbb{M}_2 , \mathbb{M}_2 ecif he <u>___b</u> e M f. M e \mathbb{M} fM, agai \mathbb{M} a d ab \mathbb{M} ai i g).

The CM_{a} Δha_{a} have $M \in (1)$ both a divergent of the Section Δha_{a} be a Δha_{a} have M = (1) both M and Δha_{a} have M = (1) both M and Δha_{a} have M = (1) both M and Δha_{a} have M have M and Δha have M h

The Nec e a M he by a d M f diec $M \boxtimes \boxtimes$ ha, be a a a e $\boxtimes M \boxtimes i$ h he e i $\boxtimes e$, M ferminiary a k $M \boxtimes e$ dge a de e ie ce a d \boxtimes ha, be a M ed b he by a d M f diec $M \boxtimes$

The, i_ \mathfrak{a}_{1} e \mathfrak{A} \mathfrak{A} \mathfrak{A} bi i i e \mathfrak{A} if he bia d i c de:

- (1) a⊠MA he dai ⊠ M k M e a iM ⊠ M f he bMa d, cM i i M ⊠ , M ide he bMa d ⊠ i h he M e a iM , M iM M M cM M a M e a iM ⊠ M de he a⊠, eg a iM ⊠, M icie⊠a d e i e_e, ⊠ M f dM_eQ ic a d fM eig eg a M age cie⊠a d e ⊠ e he bMa d cM_r ehe d ⊠ ch, M i⊠M ⊠ a d a⊠M ⊠ he di ec M ⊠ a d ge e a _ an age , e fM _ rel i de dM_eQ ic a d fM eig a⊠, eg a iM ⊠ he A ic e⊠ M f A⊠M cia iM a d a M he e e a , M i⊠M ⊠
- (3) be $e \boxtimes \mathbb{N} \boxtimes b_i e f \mathbb{N}^2$ a a ge_e, a d $c \mathbb{N} \mathbb{N}^2$ di a $i \mathbb{N} \mathbb{N}^2$ f i $f \mathbb{N} _ e_i \mathbb{N}^2$ di $\boxtimes c \mathbb{N} \mathbb{N}^2$ e, $i a i \mathbb{N} \boxtimes c \mathbb{N} \mathbb{N}^2$ e ha ce he a \boxtimes a e c $\mathbb{N} f$ he $C \mathbb{N} _ c_i$ a $^{\prime} \boxtimes \mathbb{N} \mathbb{N} \mathbb{N}^2$ e a $i \mathbb{N} \boxtimes c_i$

- (4) , a ici a e i he a a ge_e, Mf ca i a _m ke fi a ci g;
- (5) $(iai \boxtimes \boxtimes i h i e _edia, e age cie \boxtimes eg [a] a ha i i e \boxtimes a d _edia, a d$
- (6) $f_i (f_i) = f_i (f_i) = a \boxtimes A \boxtimes a \boxtimes B = a \boxtimes B = a \otimes B =$

- (1) Wiga i e, he_ee, i goo Wif, he Bina da d, he_ee, i goo Wif, he Sha ehin de Q, e, a e, e, a, dino _e, a, in Q e, a e_ee, i g_in, eQ, e O, e, he aco ac Wif, he_ee, i g_in, eQ, kee, he_ee, i g dino _e, Q i c, di g, he_ee, i g_in, eQ a d, ake, he i i ia, i e, Wif, _cin_phe d, he i_phe_e, a, in Wif, he e, a, ed eQN, in Q, e, W, W, he Bina d Q, i h Q, ggeQ in QW i_pho, a, in Q eQ
- (2) e 🛛 e he bha d' 🖾 deci 🖾 ha -_anki g ha __anjha i 🖾 e 🖾 i 🖾 ic, accha da ce 🖄 i h, he, e 🖾 i bed, ha ce i a ha a ici a e i he di 🖾 i 🖾 ha ce i g a e he e e i a he bha d, __anke 🖾 gge 🖾 i ha bha d e a ed i 🖾 e 🖾 a d fi, fi, hi i e 🖾 ha k, e he e i e 🖾 ha ha bha d ha e a ed cha __i, ee that he bha d.
- (3) $a \boxtimes he c \boxtimes a$, $e \boxtimes n$ be $\boxtimes ee he C \boxtimes a$ a d he $\boxtimes eo i i e \boxtimes eg a \boxtimes a$ a h $\boxtimes n$ i i e $\boxtimes a$, $a h \boxtimes n$ i i e $\boxtimes a$, $a k \boxtimes he$

- (9) cMN di a e N , n ide i fN __m iN , n he CN __m a '\u00ed bMa d Mf \u00ed e . i\u00ed n \u00ed a d n he eg , a N age cie\u00ed eeded fN e fN __m ce Nf hei \u00ed e . i\u00ed N fi c iN \u00ed a d a \u00ed a d a \u00ed a d n he eg , a N age cie\u00ed a d a \u00ed a d a \u00ed a d n he eg , a N age cie\u00ed a d a \u00ed a d a \u00ed a d a \u00ed a d n he eg , a N age cie\u00ed a d a \u00ed a d a \u00ed a d a \u00ed a d n he eg , a N age cie\u00ed a d a \u00ed a d a \u00ed a d a \u00ed a d n he eg , a N age cie\u00ed a d a \u00ed a d ge e a __m age N fi , fi , __e \u00ed Nf fid cia .
- (10) e f $\mathcal{M} _ \mathcal{L}$ is child be find in the find in

Di ec $n \boxtimes n$ n he $\boxtimes in _an$ age_en, _en_bre \boxtimes (e ce, he chief accn, n ge e a _an age n n he Cn_ra) _an $cn \circ e$, ac $a\boxtimes$ he \boxtimes ce e a n he bn d n d n d n n accn a (\boxtimes) n n he accn i g fi _mha $i\boxtimes$, n ed b he Cn_ra _an $cn \circ e$, ac $a\boxtimes \boxtimes e c$ e a n he bn d n f d e n

P \mathcal{M}_{i} ided ha \boxtimes he e he afffice \mathcal{M}_{i} he \boxtimes e e a \mathcal{M}_{i} he b \mathcal{M}_{i} a d \boxtimes he d $\mathbb{C}\mathcal{M}_{i}$ o e b a diec \mathcal{M}_{i} , a d a ac i \boxtimes e i ed \mathcal{M}_{i} be ded b a diec \mathcal{M}_{i} a d he \boxtimes c e a \mathcal{M}_{i} he b \mathcal{M}_{i} a d \boxtimes e a a e b a diec \mathcal{M}_{i} a d a ac i \boxtimes he \mathcal{M}_{i} d \boxtimes e a a e b a diec \mathcal{M}_{i} a d he \boxtimes c e b h \mathcal{M}_{i} d \boxtimes he \mathcal{M}_{i} he b \mathcal{M}_{i} a d \boxtimes e f \mathcal{M}_{i} d a c a ac i d a c a ac i d a c a ac i d a d \boxtimes he \mathcal{M}_{i} he b \mathcal{M}_{i} d \boxtimes he f \mathcal{M}_{i} d \boxtimes he c e a c a d i d \boxtimes he b \mathcal{M}_{i} d \boxtimes he f \mathcal{M}_{i} d a d a c a ac i d a c a ac i d a d \boxtimes he d \boxtimes he b \mathcal{M}_{i} d \boxtimes he f \mathcal{M}_{i} d \boxtimes he c e f a c a ac i d a d a d \boxtimes he d \boxtimes he b \mathcal{M}_{i} d \boxtimes he d \boxtimes

The CM_{ra} 'di ec, $M \boxtimes$ ge e a an age a d e a ed de a ch \boxtimes da a \square , M, he we ce a M he bM a d M, e f M_{rbh} i ed i ed i e \square a M fi d i i M i \square i i d i d i e i ed. A e e a de a \square of \square fi di ge c. if e i ed. A e e a de a \square of \square fi he c M_{ra} i da a ci e cM e a \boxtimes i h he we ce a M he bM a d.

0

The $CM_{ra} = \Delta ha_{1}ha_{2}e^{i\pi} e_{a}age_{1}e^{i\pi} e_{a}\Delta hM_{1}de^{i\pi} e^{i\pi} gM_{1}he^{i\pi} dM_{1}dM_{1}de^{i\pi} e^{i\pi} \Delta M_{1}e^{i\pi} e_{a}\Delta hM_{1}de^{i\pi} e^{i\pi} e^{i\pi} \Delta M_{1}e^{i\pi} e^{i\pi} e^{i\pi} \Delta M_{1}e^{i\pi} e^{i\pi} e^{i\pi} \Delta M_{1}e^{i\pi} e^{i\pi} e^{i\pi} \Delta H_{1}e^{i\pi} e^{i\pi} e^{i\pi} \Delta H_{1}e^{i\pi} e^{i\pi} e^{$

The CM_{pa} Ma, ha e M e ge e a \underline{a} age a d \underline{A} e a de \underline{a} ge e a \underline{a} age \underline{A} age \underline{A} \underline{A} age \underline{A} a \underline{A} age \underline{A} age \underline{A} a \underline{A} age \underline

The e $__{\mathcal{M}}$ if if ice if the ge e a $__{\mathcal{M}}$ age \boxtimes ha, be hee ea \boxtimes a d \boxtimes ha, be e igible $[\mathcal{M}]$ if f hi $__{\mathcal{M}}$ he if \mathcal{M} ea, \mathcal{M} i $__{\mathcal{M}}$.

The ge e a _____m age ca \boxtimes b___i hi \boxtimes e \boxtimes g a iN before here i M f hi \boxtimes e ____M f fiftice. The ficed e a d ch ce i g here e a ____m age \boxtimes e \boxtimes g a iN \boxtimes ha, be eg a ed b here ____m f \square en ch ac be \boxtimes ee here e a ____m age a d here M ____m a.

A diec $M = a_h c M \alpha = c_h^h a k e_h e_h^h M M M ge e a_ a_h age M de_i ge e a_ a_h age .$

The CM_{\perp} a ' \boxtimes ge e a $_$ an age \boxtimes ha, be acc M_{\perp} ab e M_{\perp} he BM a d M f Di ec $M \boxtimes$ a d \boxtimes ha, e e ci \boxtimes he fM, M i g fi c i $M \boxtimes$ a d M e \boxtimes

(1) ead he
$$CM_{n}$$
 a ' M_{n} if M_{n} e a if a d m_{n} age m_{n} , a d e M_{n} he blad if di ec M_{n}

(2)
$$\sqrt[n]{9}$$
 ga i e e $\sqrt[n]{10}$ ce $\sqrt[n]{10}$ ca $\sqrt[n]{10}$ he B $\sqrt[n]{10}$ e $\sqrt[n]{10}$ i $\sqrt[n]{10}$

(3) \overline{M} ga i e he i_pe_e, a \overline{M} \overline{M} he $C\overline{M}_pa$ ' \overline{M} a ' \overline{M} a di e \overline{M} , a di e \overline{M} , a f \overline{M}_pa a di e \overline{M} a di fi e \overline{M} a di fi e \overline{M} a di fi e \overline{M}

(4) d af , a
$$\boxtimes f \mathbb{N}$$
 he e $\boxtimes ab$, $i \boxtimes h_{\mathcal{A}}$, $\mathbb{N}f$ he $C \mathbb{N}_{\mathcal{A}}$ a $\mathbb{N}i$ e a $_an$ age $_an$ $\square age_{_an}$ $\boxtimes i$ c e;

(5) d af he ball c_a age_e
$$\boxtimes \boxtimes e_{f}$$
 he CA_pa

- (6) $f \mathcal{U}_{a,a} = d e_{a} a_{a} e d e_{a} a_{a} e d e_{a} a_{a} e d e_{a} a_{a} a_{a} e d e_{a} e d e_{a} a_{a} e d e_{a} a_{a} e d e_{a} e$
- (7) \sqrt{n} \sqrt{n} he a, \sqrt{n} , \sqrt{n} dialized \sqrt{n} he C \sqrt{n} , \sqrt{n} a ' a de, ge e a an age (a) a d chief acc \sqrt{n} a ' \sqrt{n} he B \sqrt{n} d;
- (9) e e ci Δe δT he , $\delta \Delta e \otimes c \delta T$ fe ed b he A ic $e \otimes \delta T$ f A $\Delta \Delta T$ cia δT he b δT a d δT f di ec $\delta T \otimes \Delta T$

I de e __in i g he 🛛 b 🖾 a _ ia i7 e a i7 a a d __a age __e , i2 🖾 e 🖄 i7 he $Ci7_{ra}$, he __a age __e , ea __i7 f he $Ci7_{ra}$.

The CM_{ra} ' \boxtimes ge e a ____ a age \boxtimes ha, a e d he __ee i $g\boxtimes M$ he bM a d M diec $M \boxtimes A M$ -diec M_{ra} age \boxtimes ha, M ha e he igh M. M e a \boxtimes ch ___ee i $g\boxtimes$

The ge e a _____ age $\Delta ha_{,,}$ for _____ a e he de ai ed ΔH ki g i $e\Delta H$ he ge e a _____ an age , Δh hich $\Delta ha_{,,}$ be $\Delta b_{,,}$ in the bound of f di ec $H \Delta H$ a , H a.

The [M] ki g (eM) if he ge e a a_n age i c de he fin M i g:

- (1) $cM di M \Delta$, Med $e\Delta a d he = be M f a ici a \Delta M ch = i g a age <math>\Delta$ ee i g;
- (2) $e \boxtimes e_i e_i e_i d_i e \boxtimes a d di i \boxtimes \emptyset$ $i \boxtimes \emptyset$ i
- (4) \mathcal{H}_{h} he a_{h} e $\boxtimes c \mathcal{H}$ \boxtimes de ed ece $\boxtimes a$ b he b \mathcal{H}_{a} d \mathcal{H}_{f} di ec \mathcal{H} \boxtimes

The $e = 2\pi M$ Miffice M a \square , $e = i \square M$ \square have be 3 ea \square , $e = e \square$ ab $e = \sqrt{M}$ a d $e = a_1 \sqrt{M}$ $\sqrt{m} = e e_1 e_1 \sqrt{M}$.

A di ec \mathcal{N} , \mathcal{A}_n age a d \mathcal{N}_n he \mathbb{Z}_e i \mathcal{N}_n age \mathcal{A}_n age \mathcal{A}_n ca \mathcal{N}_n ch \mathcal{A}_n e i \mathcal{M}_n a \mathbb{Z}_n e i \mathbb{Z}_n .

A
$$\square$$
, e i \square \square \square i \square e \square e hat he i find an indice find e indice he \square he \square indice a constant of \square indice a constant of indice a constant of a constant of a constant of a constant

 $A \boxtimes e : i \boxtimes 7 \ ca be, e \boxtimes e a a b i 7 a d i 9 f di e c i 7 i \boxtimes e e i g. He / \boxtimes he ca a \boxtimes 7, i e \boxtimes i 17 i 7 _ e ke \boxtimes g g e \boxtimes i 17 \boxtimes e f i 7 i 7 _ e e i g.$

 $A \boxtimes e_i \boxtimes 7 \boxtimes ha_{\mathcal{A}} \otimes 7 _e ke_i \boxtimes 8 \% f hi \boxtimes a \boxtimes 3 \% cia ed e_a i \% \boxtimes hi _{\mathcal{A}} i j e_h e C \%_{\mathcal{A}} a `` \boxtimes i e e \boxtimes \boxtimes a `` \% \boxtimes 2 h \%_{\mathcal{A}} a \boxtimes e d_{\mathcal{A}} % h e C \%_{\mathcal{A}} a `` h e / \boxtimes h e \boxtimes ha_{\mathcal{A}} b a h e e \boxtimes \% \boxtimes b i j \% f c \%_{\mathcal{A}} e \boxtimes a j \% .$

A \square , e. i \square 7 \square ha, fai hfi, e f% ___hi \square \square e. i \square 7 d i e \square i acc% da ce \square i h he a \square , ad i i \square a i e eg a i%7 \square a d he C%_ma ' \square A i c e \square % f A \square % fai i%7.

If a \square , e, i \square 7, cn, a, e, e \square , he, a \square , ad_i, i \square a, i, e, eg, a, in, \square , eg, a, in, \square 7, hi \square A, ic, e \square nAMM7cia, in, \square hi, e, e, n, n, g, hi \square d, ie \square a, d, ca, \square , g, n, MM2e \square , n, he, \square he, \square he, \square he, \square he, e \square , n, he, \square he, e \square , \square , he, \square he, \square he, \square he, e \square , n, he, \square he The Ci_{1} a Δha_{1} e Δha_{1} e Δha_{2} ab Δha_{2} a Δha_{3} e Δha_{4} e

The a, \mathcal{M}_{-e_1} a d dix \mathcal{M}_{A} \mathcal{M}_{A} he chai \mathcal{M}_{A} \mathcal{M}_{A} he b \mathcal{M}_{A} d \mathcal{M}_{A} \mathcal{M}_{A} be, all \mathcal{M}_{A} be a set b a set \mathcal{M}_{A} hi d \mathcal{M}_{A} (i c) dig \mathcal{M}_{A} hi d \mathcal{M}_{A} hi d \mathcal{M}_{A} (i c) dig \mathcal{M}_{A} hi d \mathcal{M}_{A} hi d \mathcal{M}_{A} he chai \mathcal{M}_{A} \mathcal{M}_{A} he chai \mathcal{M}_{A} he

- 1. e a_ine he CM_{in} ' \square fi a cia affai \square ,
- 3. de__m d ec ifica in f M_n di ec M a da M he Δe in Δe age__e e_1 be $\Delta \Delta h$ he he ac ΔM f Δh ch e ΔN Δh he Δh he ΔM he \Delta M he ΔM he ΔM he \Delta M he ΔM he ΔM he ΔM
- 4. Le if fi a cia i f M_{n} if M_{n} if M_{n} cha M_{n} fi a cia e M_{n} b M_{n} e M_{n} M_{n} d M_{n} if M_{n} if M_{n} if M_{n} a M_{n} e c. We M_{n} b M_{n} d M_{n} he ge e a _____ e i g M_{n} a M_{n} d a ______ i e ie M_{n} a M_{n} e gage, i he a_____ M_{n} he CM_{n} a , ce if ied , b ic acc M_{n} a M_{n} a d , ac ici g a di M_{n} M_{n} of a c a e e a_____ a i M_{n} ;
- 5. \sqrt{n} \sqrt{n}
- 6. \square b_i, \square h \square a \square he ge e a __ee i g \square ;
- 7. \sqrt{N} \sqrt{N} $\approx i g \sqrt{n} e i g \sqrt{n} e \sqrt{n} d a 2 e e i g \sqrt{n} b \sqrt{n} d \sqrt{n$
- 8. (a ch ega ac ill agai 🛛 di ec ll 🖾 a d 🖾 ill ____ a age___e, i accil da ce 🖓 i h he Cli____ra La🕅 iff Pell e' 🖾 Re i b ic ill Chi a;

- 9. ch d c i \mathbb{Z} a d gage if \mathbb{Z} if $\mathbb{Z$
- 10. a \Re he die $\boxtimes a \boxtimes$, $e \boxtimes c$ ibed by he A ic $e \boxtimes \Re f$ A $\boxtimes \Re f$ is a if $\Re f$ he $C \Re_{f}$ a.

The __eet i g M f a bM a d M f \square , e. i $\square M$ \square \square \square and M cet e. e. a. (6) $_M$ h \square h \square hich \square hat be cM te ed a d, e \square de M e b he chai $_$ and A \square , e. i $\square M$ $_$ and M \square e a e aM di a $_$ eet i g M he bM a d M f \square e ti $\square M$ \square

Where the chai __en $\widehat{M}f$ the \square e i $\square \widehat{M}7$ b $\widehat{M}7$ d i \square i catable $\widehat{M}f$ e fi \widehat{M} __ing \widehat{M} fai \square $\widehat{M}7$ e fi \widehat{M} __chi \square the d tie \square a \square e i $\square \widehat{M}7$ e e c ed b $\widehat{M}7$ te \square has hat fi $\widehat{M}f$ the \square e ti $\square \widehat{M}7$ \square \square has \square e ti $\square \widehat{M}7$ e e a d te \widehat{M} e the \square e ti $\square \widehat{M}7$ b $\widehat{M}7$ a d __eet i g.

A __ee i g $\Re f$ he \boxtimes e i $\boxtimes 7$ b $\Re a$ d $\boxtimes ha$, \Re be c \Re d c ed , $(\boxtimes \boxtimes \boxtimes i i \boxtimes a)$ e ded b __ \Re e ha $\bigotimes \Re$ -hi d $\boxtimes \Re f$ he \boxtimes e i $\boxtimes 7 \boxtimes \vee \Re$ i g a, he __ee i g \boxtimes e i $\boxtimes 7$ b \Re a d $\boxtimes ha$, be ca ied \Re , b , \Re , a deach \boxtimes e i $\boxtimes 7$ $\boxtimes ha$, ha e \Re e . $i \boxtimes 7 \boxtimes 2$ $\boxtimes 7$ $\boxtimes ha$, a e d __ee i g $\boxtimes \Re f$ he \boxtimes e . $i \boxtimes 7$ b $\Re a$ d i , e $\boxtimes 7$, \Re a , \Re i i \bigotimes i i g a $\Re f$ hi \boxtimes he \boxtimes e . $i \boxtimes 7$ \Re a , e d __ee i g $\boxtimes \Re f$ he \boxtimes e . $i \boxtimes 7$ b $\Re a$ d i , e $\boxtimes 7$, \Re a , \Re i i \bigotimes i i g a $\Re f$ hi \boxtimes he \boxtimes e . $i \boxtimes 7$ \Re a , e d he __ee i g \Re hi \boxtimes he beha f d e \Re hi \boxtimes he ab \boxtimes e c. The e \Re f a hi \Re i a $i \Re$ \boxtimes ha \boxtimes e cif he e e \Re f a hi \Re i a $i \Re$.

 $Re \boxtimes 7(i i i \boxtimes a) he _eei g i m f he b i m a d i m f \boxtimes e i i \boxtimes 7 \boxtimes \boxtimes ha be a \boxtimes 2 e d b _i m e ha [N e h i d M m f he i e i i \boxtimes 7 \boxtimes . M e ha [N e h i d M m f he i e i i \boxtimes 7 \boxtimes . M e h i d M m f he i e h i m e h i$

0

The dias Made dial each di the __int each f he __eet i g M he bM d M f a the __ia the

A \mathcal{M} ice \mathcal{M} is the set in \mathcal{M} is \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} is \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} is \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} in \mathcal{M} is a set of the set

A
$$M_i$$
 ice M_i a bMa d M_i M_i e i M_i M_i e M_i i g M_i e M_i i g M_i e M_i i g M_i e M_i

- (1) $da_i e_i = e_i a d d a_i i \pi he_i e_i g;$
- (2) $ea \boxtimes 7 \boxtimes a d i \boxtimes 8 e \boxtimes 7 f di \boxtimes 8 \boxtimes 7 ;$
- (3) da e $\Re f$ i a ce $\Re f$ \Re ice.

The eal A able e e A e A i α ed b he bha d h a h a h e i A a A i he e gage i h f h f e A a

The eaking able e , e kek i α , ed b a k , e iking for a le dig _eei g off borad off k , e iking k, a d k ch e , e kek i c , de he of - for a k of , feek for ____he , for a if off he k , e . iking off he _eei g . e , e (if off a he for a if off he ekide ce off k ch k , e . iking) a d he accor____for a d ___ea e , e ked i g k ch __eei g k

A, $e \boxtimes 7$ _ a_1 $\boxtimes 7$ $\boxtimes e$ = $a \boxtimes 7$, $\boxtimes e$ = $i \boxtimes 7$, $g = e_1$ _ a_1 age $i = i \boxtimes 7$ _ a_1 age $i = i \boxtimes 7$ _ a_1 age $i = i \boxtimes 7$ _ a_2 = a_1 _ a_2 = a_1 _ a_2 = a_2 _ a_3 = a_1 = a_2 = a_3 = a_4 = a_2 = a_3 = a_4 = a_2 = a_3 = a_4 = a_4

- 1. a e $\square 7$ \square i hn ca aci i $\square 7$ \square i h e \square i c ed ca aci fn ci i ac \square ;
- 2. a e 🖾 7 🕅 hŵ ha⊠ch ____ind a 17ffe ce 17f ch i, in , b ibe , i f i ge__en , aff, 17 e , __ina, 17 ia in Mf, 17 e , 17 Zabba agi g he ⊠hcia, ech 17 _ie 17 de a dha⊠bee , i⊠hed beca ⊠e 17f ch ___ini i g ⊠ ch Mffe ce; 17 ⊠hŵ ha⊠ bee de i ed 16f hi⊠, 17 i ica igh ⊠, i each ca⊠e ⊠ he e e⊠ ha fi e (5) ea ⊠ ha e e a ⊠ed ⊠ ce he da e 16f he ch __ne in 17ff i__ne_en a in 17ff ⊠ ch , i⊠h_en , 17 de, i a in 7;
- 4. a e $\Delta n \otimes h \pi i \Delta a f \pi _ e_1$ ega, e e Δe_1 a $i \in M f a c \pi _ r a = \pi e_1 e_1 = i \Delta e \otimes hich had i \Delta b \Delta e e \Delta A ice \Delta e e M ked d e <math>\pi a_1$ i $\pi a i \pi \pi$ iff he a $\Delta a d \otimes h \pi i = a = a d e \Delta \pi a_1$ i abilition, where $e = \Delta a = a \otimes h a \otimes e_1 = a \otimes h a \otimes h a \otimes h a = a \otimes h a \otimes$
- 5. a e $\square 7$ \square h \square ha \square a e a i e a ge a \square \square \square f deb \square d e a d \square \square a di g;

- 6. $a \in \mathbb{M}7 \otimes h$ $\mathbb{N}^{1}\mathbb{M}$ de ci_ina, i $\in \mathbb{M}$ iga i $\mathbb{N}^{1}\mathbb{N}$, $\mathbb{N}\mathbb{M}$ equivalence i \mathbb{N}^{1} e ci \mathbb{N}^{1} ga i a i \mathbb{N}^{1} i \mathbb{N} a i \mathbb{N}^{1} i \mathbb{N} a i \mathbb{N}^{1} i \mathbb{N} a i \mathbb{N}^{1} i $\mathbb{N}^{$
- 7. a e $\boxtimes 7$ \boxtimes h \Im i \boxtimes \Re hibi ed \Re e e he \boxtimes eo i i e \boxtimes e ke b he CSRC a d he af \Re e \boxtimes aid, \Re hibi i \Re , e i \Re d ha \boxtimes \Re e e i e;

9.
$$47 - a_1 a_2 e \square 7$$
;

10. \overline{M} he cio_____A a ce \overline{A} , e \overline{A} ibed b, he a \overline{A} , ad \overline{A} i \overline{A} a i e eg a i \overline{M} \overline{A} de a \overline{A} eg a i \overline{M} \overline{A} a \overline{A}

The a idi \Re f a ac \Re f a di ec \Re \Re \boxtimes i \Re \Re ffice \Re beha f \Re f he $C\Re_{-1}$ a $\ \Re$ a d \boxtimes a $\ i\boxtimes$ a -. i \boxtimes b \Re a fide hi d a \boxtimes ha \Re be affected b a i eg a i i hi \boxtimes o e \Re ffice, etc. i \Re \Re a defecti hi \boxtimes a a ifica i \Re .

- 1. \overline{N} ca $\underline{\mathbb{X}}$ he $\underline{\mathbb{C}}\overline{N}_{-i}$ a \overline{N} e ceed he $\underline{\mathbb{X}}\overline{\mathbb{N}}$ e $\overline{\mathbb{N}}$ f b $\underline{\mathbb{X}}$ e $\underline{\mathbb{X}}\underline{\mathbb{X}}$ i, a ed i i $\underline{\mathbb{X}}$ b $\underline{\mathbb{X}}$ e $\underline{\mathbb{X}}\underline{\mathbb{X}}$ ice ce;
- 2. ac h \sqrt{n} e \propto i he be \propto i e e \propto \propto \sqrt{n} he C \sqrt{n} ;
- 3. $M \in M$ ia e i a g i \mathbb{Z} e he CM_{ra} i \mathbb{Z} , $M \in \mathbb{Z}$, i c, di g $(\mathbb{Z}_{i}, hM, (i_{ra}, M) \in \mathbb{Z}, a)$ if M is a if M he CM_{ra} ; a d
- 4. \overline{M} de i e he Zaha eh \overline{M} de Zi \overline{M} f hei i di idia, igh \overline{M} \overline{M} i e e \overline{M} \overline{M} i c, di g (\overline{M} i h \overline{M} , i i i a, i \overline{M}) igh \overline{M} \overline{M} di \overline{M} ib i \overline{M} a d. \overline{M} i g igh \overline{M} \overline{M} a e \overline{M} a \overline{M} a e \overline{M} a c \overline{M} a e \overline{M} a c \overline{M} a e \overline{M} i c e \overline{M} i f he \overline{CM} c \overline{M} a \overline{M} b in ed \overline{M} Sha eh \overline{M} de \overline{M} \overline{M} a i acc \overline{M} da ce \overline{M} i h h \overline{M} A ic e \overline{M} \overline{M} A \overline{M} A c i a i \overline{M} .

Each \widehat{M} he \widehat{CM}_{ra} \widehat{M} Di ec $\widehat{M} \boxtimes \widehat{M}$ e $\widehat{M} \boxtimes \widehat{M}$ ge e a <u>a</u> age a d \widehat{M} he \widehat{M} is <u>a ge en </u>, <u>en be</u> $\widehat{M} \boxtimes \widehat{M}$ e \widehat{M} a d \widehat{M} he e ci \widehat{M} is \widehat{M} hi \widehat{M} he \widehat{M} a d di \widehat{M} he \widehat{M} a di \widehat{M} he \widehat{M} a di \widehat{M} he \widehat{M} a di \widehat{M} he \widehat{M} he \widehat{M} a di \widehat{M} he \widehat{M} he \widehat{M} a di \widehat{M} he \widehat

The CM_{a} a ' \boxtimes di ec $M \boxtimes$, \boxtimes , e i $\boxtimes M \boxtimes$, a d \boxtimes i M'_{a} age e, 1, 2n, i he e ci \boxtimes iM' he i d ie \boxtimes abide b he i ci $(\boxtimes M')$ fai h a d \boxtimes i M'_{a} a ce he \boxtimes e i a M'_{a} i M'_{a} i M'_{a} he e he e i \boxtimes a c M'_{a} fic be \boxtimes ee hei e $\boxtimes M$ a i e e \boxtimes \boxtimes a d hei d ie \boxtimes Thi \boxtimes , i ci e \boxtimes ha, i ci de (h , M'_{a}, i _{a}, ed , M) he fi fi, 2n if he f M'_{a} M'_{a} i g M_{b} ig i M'_{a} is

- 1. \sqrt{n} ac $h\sqrt{n}$ eQ i he beQ i e eQ \sqrt{n} he $C\sqrt{n}$;
- 2. \sqrt{N} e e ci Δe , \sqrt{M} e $\Delta \Delta e$ i hi he Δc if \sqrt{N} e if \sqrt{N} is a d, \sqrt{M} e Δe a d if \sqrt{N} e ceed Δe ch, \sqrt{M} e Δe
- 3. $[M] \in \mathbb{Z}$ \mathbb{Z} \mathbb{Z}
- 4. \sqrt{N} ea Sha eh \sqrt{N} de \boxed{M} he $\boxed{\Delta a_{-1}c_1c_2}$ a \boxed{M} ea Sha eh \sqrt{N} de \boxed{M} diffe e c_2 a $\boxed{\Delta M}$ fai ;
- 5. If North cide a children a citil e e i Na a Macihi Na a ge_en Maih he Chi_pa e ce a Marine Milde, Na ided i hild A ic e Niff A Marine in Niff, he Chi_pa Ni Maih he i thi _ed childe in the ge e a _ee i g;
- 6. \overline{M} , \overline{M} , \overline{M} be he $C\overline{M}$ a , \overline{M} e , \overline{M} hi \overline{M} he eff i a \overline{M} a \overline{M} he i \overline{M} ed \overline{M} \overline{M} he ge e a _____ ee i g;
- 7. \Re , \Re e, \Re , $hi \boxtimes$, $\Re \boxtimes$, \Re , \Re acce, b ibe $\boxtimes \Re$, \Re he i ega i c \Re e, \ldots \Re i a e, he C \Re a ' \boxtimes fi d \boxtimes \Re e, \Re i a e, he C \Re a ' \boxtimes , \Re e, b a _ ea \boxtimes , i c, di g (\boxtimes i h \Re , i _ i a a i \Re) \Re , \Re , i = i e \boxtimes ad a age \Re \boxtimes , \Re he C \Re a;
- 8. If π acce, $c\pi$ in M i $c\pi$ ec if M i $c\pi$ ec if M i $c\pi$ a M a M i π he i π he i π ed $c\pi$ M i π he i π d $c\pi$ M i π he i π d $c\pi$ M is in π be i π is the first order of M is the firs
- 9. $\sqrt{7}$ abide by he A ic example a kine if $\sqrt{7}$ and $\sqrt{7}$ he Chara , e for the ixed is a difference in the chara is a differen
- 11. \overline{M} , \overline{M} _i \overline{M} ia e $C\overline{M}$, $\overline{\mu}$ a fi d $\overline{M}\overline{M}$ de $\overline{M}\overline{M}$, he $C\overline{M}$, $\overline{\mu}$ a fi d $\overline{M}\overline{M}$ a $\overline{M}\overline{M}$ ia acc \overline{M} , de hi \overline{M}
- 12. \overline{n} , \overline{n} , $i = i\overline{n}$, a, \overline{n} , $\overline{n}f$, $he = \overline{n}$, \overline{n} , $\overline{n}f$, $\overline{n}e = \overline{n}f$, $\overline{n}f$, $\overline{n}e = \overline{n}f$, $\overline{n}f$, $\overline{n}e = \overline{n}f$, $\overline{n$
- 13. \mathcal{M}_{1} \mathcal{M}_{1} ha $_{\mathcal{L}_{1}}$ he i e e \mathbb{N}_{2} \mathcal{M}_{1} he \mathcal{M}_{1} \mathcal{M}_{2} he \mathcal{M}_{1} he \mathcal{M}_{2} e c e c e c a \mathcal{M}_{2} \mathbb{N}_{1} is the formula of \mathcal{M}_{2} if \mathcal{M}_{1} is the formula of \mathcal{M}_{2} is the formu

- 14. A Malac Mae chi fide ia i fhi __enihi e a i g A he Chi_ra ha Malac i ed b hi_ra he d i g him he Affice Mihhi he i fhi __ed chi Me Aff he ge e a __ee i g, a d A A Malac i ed b hi_ra he d i g e ce i he i e em M f he Chi_ra ; hhm e e , M ch i fhi __enihi __en be dim Maled A he chi Mi A he ghi e __en a hhi i em i a Aff he fhi Mali g ci o __Ma ce Ma
 - (1) M ided b a;
 - (2) $e_{i} i ed i_{i} he_{i} b_{i} i c i_{i} e e {\bf A}; {\bf A}$

Each Di ec $\sqrt{7}$, \boxed{M} , e : $\boxed{M7}$, ge e a ____ an age $\sqrt{7}$ $\sqrt{7}$ he \boxed{M} i \boxed{M}

- 1. $he \boxtimes \Re \boxtimes \Re __{in} \Re$ chi d $\Re f \boxtimes$ ch di ec \Re , \boxtimes , e, $i \boxtimes \Re \boxtimes$ i $\Re __{an}$ age_o, $\Re f$ he $C \Re __{an}$;
- 2. he $[\Delta e i M a di e c M a di e i M e i M e i M e i M e a age_e M b e C M_m a M M f a e M f e e e di I le_m (1) he e M f;$
- 3. he a e $\Re f$ a di ec \Re , \boxtimes e i $\boxtimes 7$ \Re \boxtimes e i \Re _____ age___e , $\Re f$ he $C\Re_{-_{n}}$ a \Re $\Re f$ a e $\boxtimes 7$ efe ed i I e _____ A(1) a d (2) he e $\Re f$;
- 5. he di ec $\sqrt{3}$, \square , e. i $\square \sqrt{3}$ $\sqrt{2}$ e i $\sqrt{3}$ $\sqrt{3}$ ffice $\sqrt{3}$ f a c $\sqrt{3}$ bei g c $\sqrt{3}$ $\sqrt{3}$ ed a \square efe ed $\sqrt{3}$ i I e_-c(4) he e $\sqrt{3}$ f.

The fid cia di ie $\boxtimes M$ fihe Di ec $M \boxtimes \boxtimes$, e. i $\boxtimes M \boxtimes$ ge e a __en age a di fihe \boxtimes iM = age__en __e__be $\boxtimes M$ fihe $CM_{_CPA}$ di fine $CM_{_CPA}$ di fine

⁰

Whe e a Di ec $\sqrt[3]{1}$, \boxed{a} , e_{\perp} is $\sqrt[3]{2}$, e_{\perp} and e_{\perp} and e_{\perp} and \boxed{a} and e_{\perp} and \boxed{a} , \boxed{a} and \boxed

A di ec $\sqrt[3]{2}$ Ma $\sqrt{\sqrt{3}}$ e f $\sqrt[3]{3}$ a c $\sqrt{3}$ a $\sqrt{3}$ a ge_e i $\sqrt[3]{3}$ hi M he hi $\sqrt{2}$ e f $\sqrt{3}$ a $\sqrt{3}$ f hi M he i $\sqrt{3}$ e f $\sqrt{3}$ a $\sqrt{3}$ f hi M he i $\sqrt{3}$ e i $\sqrt{3}$ i e e $\sqrt{3}$, $\sqrt{3}$ C h di ec $\sqrt{3}$ M ha $\sqrt{3}$ b e i c ded i he i $\sqrt{3}$ i $\sqrt{3}$ a _ee i g.

U $(\mathbf{A} \mathbf{M})$ he i $(\mathbf{e} \in \mathbf{M} \setminus \mathbf{A} + \mathbf{M})$ e $(\mathbf{M} \setminus \mathbf{M} \times \mathbf{M})$ a $(\mathbf{M} \times \mathbf{M})$ d $(\mathbf{M} \times \mathbf{M})$ e $(\mathbf{M$

Whe e a di e $\sqrt{1}$, $\boxed{\Delta}$, e i $\boxed{10}$, $\sqrt{1}$ de i $\sqrt{1}$ affrice $\sqrt{1}$ he $C\sqrt{1}$, a gi e $\boxed{\Delta}$ a $\boxed{\Delta}$ i e $\sqrt{1}$ ice $\sqrt{1}$ he b $\sqrt{1}$ a d $\sqrt{1}$ f di e $\sqrt{1}$ $\boxed{\Delta}$ before he control is $\sqrt{10}$ f f he dots at a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f he control is $\sqrt{10}$ f he dots at a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f he dots at a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f he dots at a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a f he dots at a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a f a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a f a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a f a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a f a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f a ge_e, he had a i e e $\boxed{10}$ i he control is $\sqrt{10}$ f f he dots at the control is $\sqrt{10}$ f f he dots at the form a standard in the dots at the form a standard in the form a standard is f f he dots at the form a standard is f f he dots at the form a standard is f f he dots at the form a standard is f he dots at the dots at the form a standard is f he do

The CM_{i} a M_{i} i a M_{i} i a M_{i} i a M_{i} i M_{i} is behave for M_{i} and M_{i} is M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in M_{i} in M_{i} in M_{i} in M_{i} in M_{i} is M_{i} in $M_$

The CH_{pa} Δha , H diec, H i diec, H ide a Ha H Aa Δeo i, H a diec $H \Delta$, Δe , $i\Delta H \Delta H$ Δe iH ae age_e , H he CH_{pa} H H he CH_{pa} ΔH he CH_{pa} A ΔH he AH ΔH he ΔH ΔH ΔH ΔH he ΔH ΔH

The M i M M M is certain the second of a grant and a matrix M and M is certain the second of a certain the second of the second o

1. the M in M in M in M a

2. he $\Re_1 i \boxtimes \Re_1 \Re_1 a \Re_2 \Re_3 \boxtimes \Re_1 a \boxtimes \alpha i \Re_1 \Re_1 he fi d \boxtimes b he C \Re_pa = \Re_1 a diec \Re_1 \otimes e i \boxtimes 1 \Re_1 M = i i \boxtimes 1 \Re_1 a diec \Re_1 \otimes e i i \boxtimes 1 \Re_1 a diec \Re_1 \otimes e i \otimes 1 \Re_1 a diec \Re_1 \otimes e i \otimes 1 \Re_1 a diec \Re_1 \otimes 1 \Re_1 a diec \Re_1 \otimes 1 \Re_1 a diec \Re_1 \otimes 1 \Re_1 \otimes_1 \Re_1 \otimes_1 \Re_1 \otimes_1 \Re_1 \otimes_1 \otimes_1 \otimes_1$

3. he \overline{M} is \overline{M} if \overline{M} a $\overline{$

A Ma, M ided b he Ma, ma = i + iMa iM Mf he ecedi g A ic e Ma be introduce e a able b he eci ie Mf he Ma, ega d e MMMf he e = MMf he Ma.

A Ma g a a ee, Mi ided b he CM_{i} a i b each Mf, Mi ideMi, de A ic e 189 Ma, bei e fM ceable agai Mi he CM_{i} a , Mi ided ha:

- 1. \square he he Ma i \square , M ided Ma CM ec ed Pe $\square M$ Mf a di ec M, \square e i $\square M$ \square age_e Mf he CM \square a M i \square a e CM \square a e M i \square a e M i a e iM a e i a de iM a e i a de i a d
- 2. he cM_{a} a e a M_{a} ided b he CM_{a} a hall bee aM_{a} find M_{a} d b he M_{a} ide M_{a} a bla a fide challe.

Fin the interval of the ecceding a ticle of the hind charge, the e $_{D1}$ deconing the ecceding a ticle of the hind charge interval of the ecceding a ticle of the ecceding

- 1. $de_{en} d he e e a di ec 17, \square, e i \square 7 17 \square e i 17 _an age_e <math>\pi c n_{en} e \square a e f n' he n \square 2 n \square 2 n a e f n' he n \square 2 n \square 2 n a e f n' he n \square 2 n \square 2 n a e f n' he n \square 2 n \square 2 n a e n' n' a e n' a e n' n' a e n' n' a e n' a e n' a e n' n' a e n' a e n' a e n' n' a e n' n' a e n' a e n' n' a e n' n' a e n' a e n' n' a e n' a e n' n' a e n' n' a e n' n' a e n$
- 3. de__m d_he e e a di ec $\sqrt{7}$, $\boxed{3}$, e i $\boxed{37}$ $\sqrt{7}$ $\boxed{26}$ i $\sqrt{7}$ $\boxed{37}$ e de he gai $\boxed{37}$ de i ed f $\sqrt{7}$ __m age__e $\sqrt{7}$ $\boxed{37}$ e de he gai $\boxed{37}$ de i ed f $\sqrt{7}$ __m he b each $\sqrt{7}$ f hi $\boxed{37}$ $\sqrt{37}$ $\boxed{37}$
- 4. $ecn e a fi d a ecei ed b he e e a di ec n , a e i a n age_e ha a a e bee ecei ed b he <math>Cn_{a}$, i c di g (b n i i i e d' c) cn_{a} age_n ha a ha e bee ecei ed b he Cn_{a} , i c di g (b n i i i e d' c) cn_{a} age_n b a a c ha a c ha e bee ecei ed b he Cn_{a} , a c di g (b n i e d' c) cn_{a} and cn_{a}
- 5. de__end_he e e a diec 17, 12, e i 1247, 17 12 e i $17 __en$ age__en 17 = 16 he i e e 127 e a ed 17 1722 a be a ed 172 a be a ed 122 a bed 122 a be a ed 122 a be a ed 122 a be a ed 1

The $CM_{ra} = \Delta ha_{c} e_{e} i M a cM$, $ac_{i} i \otimes i i \otimes i i \otimes i h e_{e} di ec_{i} M a d \otimes e_{i} i \otimes M f$, he $CM_{ra} cM$ ce i g hi $\Delta e_{i} \otimes A$ i ch cM a c Δha_{c} be a M ed b he ge e a ___ee i g bef M e i i Δe e ed i M. The ab M e ___ei $\Delta ha_{c} = A$ i __ei Δha_{c} i c de:

- 1. $e_{\mathcal{M}} = e_{\mathcal{M}} \otimes e_{\mathcal{M$
- 2. $e_{\mathcal{M}} = e_{\mathcal{M}} \otimes e_{\mathcal{M$
- 3. e_M_____ M/ he N/ ke i c// ec i// N/ he ____ age___ M/ he C//____ a // a D/ b/ dia he e// f; a d
- 4. fi d a la c $\mathcal{H}_{\mathcal{H}}$ e la i \mathcal{H} fi \mathcal{H} hi $\mathcal{H}_{\mathcal{H}}$ fi $\mathcal{H}_{\mathcal{H}}$ fi $\mathcal{H}_{\mathcal{H}}$ fi $\mathcal{H}_{\mathcal{H}}$ fi $\mathcal{H}_{\mathcal{H}}$ he af $\mathcal{H}_{\mathcal{H}}$ e d diec $\mathcal{H}_{\mathcal{H}}$ a d $\mathcal{H}_{\mathcal{H}}$ e i $\mathcal{H}_{\mathcal{H}}$ A

A diec $\sqrt[3]{17}$ \boxed{M} , e_{-1} \boxed{M} , \boxed{M} \boxed{M} e_{-1} , \boxed{M} \boxed{M} \boxed{M} , \boxed{M}

I addi in , he $Ci_{-,i}a$ $\Delta ha_{,i}e_{,e}e_{,i}$ in $a ch_{,i}ac_{,i}e_{,i}e_{,i}e_{,i}ad_{,i}ad_$

- (1) a i de aki g b he di ec \$7, \$2, e i\$267 \$7 \$\alpha\$ e i\$7 \$fffice \$7, he Ch_ra ha he \$\alpha\$ha \$\alpha\$ha \$\alpha\$ b \$\alpha\$e e a d c\$7_ra \$\alpha\$i h he Ch_ra La\$2, he Reg a i\$7 \$\alpha\$ hi\$2 A ic e2\$\$ \$ff A \$\alpha\$267cia i\$7 a d\$7 he eg a i\$7 \$\alpha\$ hi\$2 A ic e2\$\$ \$ff A \$\alpha\$267cia i\$7 a d\$7 he eg a i\$7 \$\alpha\$ hi\$2 A ic e2\$\$ \$ff A \$\alpha\$267cia i\$7 a d\$7 he eg a i\$7 \$\alpha\$ \$ff ided i he H\$7 g K\$7 g E cha ge, a d a ag ee_e1 ha he Ch_ra \$\alpha\$ha he e_edie\$2, \$\bar{n}\$ ided i hi\$2 A ic e2\$\$ \$ff A \$\alpha\$267cia i\$7 a d ha ei he he c\$7 ac \$7\$ hi\$2 he \$\alpha\$ffice i\$2 a \$\alpha\$36 g ab e;
- (2) a ı de aki g b he di ec n , ⊠ e i i⊠n n ⊠e in nffice n he Ch na ha he ⊠ha, ac a⊠ a age fin each ⊠ha ehn de n nb⊠e e a d ch n ⊠i h hi⊠nb iga in ⊠n ⊠ha ehn de ⊠⊠i ı a ed i hi⊠A ic e⊠n A A Za in a d
- (3) the a bi a iM c a \mathbb{Z} a \mathbb{Z} a \mathbb{Z} a \mathbb{Z} b iN i A i c 243 the M.

The chi ac fui e_bi _e, \boxtimes e edi $\sqrt[n]{be} \boxtimes$ ee he Chi ra a di \boxtimes di ec $\sqrt[n]{B}$ \boxtimes e i \boxtimes {n} \boxtimes di ni di ni di ec $\sqrt[n]{a}$ \boxtimes fi a aken e fui he Chi ra , he Chi ra ' \boxtimes di ec $\sqrt[n]{B}$ a d \boxtimes e i \boxtimes {n} \boxtimes \boxtimes da , \boxtimes bjec, $\sqrt[n]{n}$ he , in a , $\sqrt[n]{a}$ a fi he ge e a _ee i g, ha e he igh, $\sqrt[n]{n}$ ecei e chi re \boxtimes a i $\sqrt[n]{n}$ $\sqrt[n]{n}$ he , a _e, $\sqrt[n]{n}$ $\sqrt[n]{n}$ $\sqrt[n]{n}$ $\sqrt[n]{n}$ fi fiftice $\sqrt[n]{n}$ e i e_e i .

FM he, $M \ge M M$ he, ecedig, a ag a, h, he e ____a ake M e M f he $CM_{-m}a - Ma_{-}efe M a M$ he fM he fM i g ci a _____A ce M

1. a $\sqrt[n]{7}$ e $\underline{}_{a}$ ke \boxtimes a ge e a $\sqrt[n]{7}$ ffe $\sqrt[n]{7}$ a $\underline{}_{a}$ he \boxtimes ha eh $\sqrt[n]{7}$ de \boxtimes

2. a $i = a ke \Delta a ge e a i f f e \Delta f ha he i f f e i beci e \Delta a ci f i g \Delta ha e h i de a \Delta defi ed he e i f f.$

⁰⁰

⁰

0

0

The $CM_{ra} = Ma_{1} fM_{ra} e_{1} \otimes M_{2}$ fi a cia a d acc M_{1} i $g \boxtimes \boxtimes e_{M}$ i a ccM da ce $\boxtimes i$ h, M_{1} i $\boxtimes M_{2}$ fi he $a \boxtimes a$, ad_{ra}

0

The CM_{a} a dM_{a} \square he case da ea $a\square$ i \square fi \square case a, \square hich \square has begin i each ea M_{a} 1 Jana a d e d M_{a} 31 Dece_be M_{a} he G egM is case da.

The CM_{a} a Δha_{a} e a e fi a cia e M Δa he e M feach fi Δha_{a} ea , a d Δha_{a} be e a_{a} he d M feach fi Δha_{a} ea , a d Δha_{a} be e a_{a} he d M feach fi Δha_{a} ea , a d Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} he d M feach fi Δha_{a} be e a_{a} he d M feach fi Δha_{a} he d M feach fi A he d M feach fi A

0

The bina d inf di ec in \boxtimes inf he Cin_ma \boxtimes ha, ace befind e he \boxtimes ha ehind de \boxtimes a each ge e a __ee i g \boxtimes ch fi a cia e in \boxtimes all e, e a \boxtimes all all in i \boxtimes a i e eg a in \boxtimes a d in \square en \boxtimes a d in \square m ga ed b he inca gind e __en a d he a hin i i e \boxtimes i -cha ge e i e he Cin_ma if e a e.

0

A teat 21 da to befin e he a tra ge e a tere i g, he Cin_{a} a to bat determined e fin e terminated e fin e to bat de the e a transformed e fin e to bat de the e a transformed e fin e terminated e

0

I e $i_{\mathcal{L}} = \mathbb{Z} \times \mathbb{Z} / \mathbb{Z}$ fi a cia i fi7 $a_{\mathcal{L}} = a_{\mathcal{H}} / \mathbb{Z}$, b i $\mathbb{Z} \times \mathbb{Z} / \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ i g \mathbb{Z} a da d \mathbb{Z} , $a_{\mathcal{L}} = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ i g \mathbb{Z} a da d \mathbb{Z} , $a_{\mathcal{L}} = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ i g \mathbb{Z} a da d $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ i g \mathbb{Z} a da d $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ a da d $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ a da d $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ a da d $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ da ce $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z$

0

The CM_ra Δa_1 , $b_1 \Delta a_2$ fi a cia, $e_1 A_2$ Δa_2 , $a_1 e_1$, $a_1 e_1 = i_{-1} f_1$ a cia, $e_1 A_2$ Δa_2 A_2 Δa_3 , $b_1 A_2$ A_2 A_3 , $b_1 A_2$ A_3 , $b_2 A_3$ A_3 , $b_1 A_2$ A_3 , $b_2 A_3$, $b_1 A_2$ A_3 , $b_2 A_3$, $b_2 A_3$, $b_3 A_3$ A_4 , $a_1 a_2$, $a_2 a_3$, $a_1 a_2$, $a_2 a_3$, $a_3 a_4$, a_4 , a_5 , $a_1 a_2$, $a_2 a_3$, a_3 , a_4 , a_5 , $a_1 a_2$, a_2 , a_3 , a_4 , a_4 , a_4 , a_5 , a_5 , a_6 , a_7 , a_8 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_1 , a_2 , a_3 , a_4 , a_1 , a_2 , a_1 , a_2 , a_3 , a_4 , a_1 , a_2 , a_1 , a_2 , a_3 , a_4 , a

0

The CM_{a} Δa M_{a} M_{a} M

The $cN_{1,27}N_{1}$ ca $i_{3}a_{1}$ e $\Delta e = \Delta ha_{1,1}$ i $c_{1,1}$ de the $fN_{1,1}N_{2}$ i g fi d Δe

- 1. , he, e_ i_1 _A M b, ai ed f M_ x_1 he iM e M A a eM i e ceM M A he a;
- 2. M he e e e i ed b he S a e C M ci ' M de a -e i cha ge M fi a ce M be i c i ded i he ca i a $C M_{-1} M_{-1}$ e M e M e.

Where $a c \overline{N}_{pa}$ $di \overline{\mathbb{Z}}$ is $e \overline{\mathbb{Z}}$ is a f e - a, $\overline{M} f \overline{\mathbb{Z}} \overline{M} f$ here e = a, $i \overline{\mathbb{Z}} ha$, $d a \overline{\mathbb{Z}} 10$, $e c = \overline{M} f$ here, $\overline{M} f \overline{\mathbb{Z}} a$ $a \overline{\mathbb{Z}}$ here $C \overline{N}_{pa}$ $i \overline{\mathbb{Z}} a$, $\overline{M} = c \overline{\mathbb{Z}} - a$

If he aco _____a i e ba a ce $\Re f$ he $C\Re_{-n}a$ ' $\boxtimes \boxtimes a$, \Re $c\Re_{-n}\Re$ $e\boxtimes e$ e i \boxtimes \Re e \Re gh \Re_{-a} ke, $f\Re$ he $\Re \boxtimes \boxtimes \Re f$ he e i \Re $\boxtimes a$, he o e e a ' \boxtimes , $\Re f_1 \boxtimes \boxtimes a$, fi \boxtimes be $\boxtimes e$ f \Re ___aki g, he \Re M be $\Re e$ he $\boxtimes a_1$, \Re $c\Re_{-n}$, \Re e $\boxtimes e$ e i $\boxtimes d$ a \boxtimes , he ef \Re_{-a} conditions of \Re $\boxtimes \Re$ f he, ecedi g a ag a h.

Af e he CN_{pa} d $a \boxtimes \boxtimes$ he \boxtimes a N cN_{pa} e \boxtimes e f N_{pa} he af e - a N fi \boxtimes i _ e , i N a e $\boxtimes N_{1}$ i N _ ende b he ge e a _ e e i g, d a \boxtimes a di \boxtimes e i N a cN_{pa} e \boxtimes e f N_{pa} he af e - a N fi \boxtimes

If he knach M de \square _ee i g di \square ib e \square he M fi \square b \therefore in \square i \square in \square i \square M is M find the ecodi g a aga h before he M where \square and \square and \square is a distribution of \square \square M expansion of a log M find \square is a distribution of a log \square M is a distribution of a log

 $N_{i} = M_{i} = M_{i$

The elder ellip he Chi_ma illa lade M_{eller} , he Chi_ma 'lla M_{eller} , he Chi_ma 'lla M_{eller} , he Chi_ma 'lla caller he Chi_ma 'lla Matter he chi matter

Whe ega $e\boxtimes e$ e fi $d\boxtimes a e e M$ e edi M ca i a, he e_{ai} i g ba a ce M fha $e\boxtimes e$ e fi $d\boxtimes ha$. M be $e\boxtimes M$ ha 25% M fhe $egi\boxtimes e$ ed ca i a M $fhe CM_{ai}$ a before the eM e M M.

The $CM_{-17}a = a$ dial is e di ide dali M e M he fM M i g fM -a (M i bM h fM -a):

- 1. $ca \Delta h;$
- 2. ⊠ha e⊠

U $(e \Delta M)$ he $\boxtimes i \Delta e$, \widehat{M} ided b he e, e, a $(a \boxtimes \Delta A)$ d eg $(a i \widehat{M} \boxtimes f \widehat{M})$ he $(a _e)$, \widehat{M} f $(a \boxtimes A)$ di. ide d $\boxtimes A$ d \widehat{M} he $(a _e)$, \widehat{M} is \widehat{M} e ig α e c, he e cha ge $(a \boxtimes \Delta A)$, $(a \land A)$ he $(a = a ge (\widehat{M} \boxtimes g))$ ice $a \cap \widehat{M}$ ced he Pe \widehat{M} (e' \boxtimes Ba k \widehat{M} Chi $a \cap \widehat{M}$ e cale da \boxtimes eek bef \widehat{M} e he dec $(a = a \cap \widehat{M})$ da e \widehat{M} \widehat{M} ch ca \boxtimes hi ide d $\boxtimes a$ d \widehat{M} he $(a _e)$, \boxtimes Ba k \widehat{M} Chi $a \cap \widehat{M}$ e cale da \boxtimes eek bef \widehat{M} e he dec $(a = a \cap \widehat{M})$ da e \widehat{M} \widehat{M} ch ca \boxtimes h d \widehat{M} he $(a _e)$, \boxtimes

That a a_{A} and i i ad a ce \Re f ca $\boxtimes \Re$ a \boxtimes hat e \Re f he $C\Re_{A}$ a a_{A} can i e e \boxtimes b \boxtimes hat \Re_{A} e i, e he h \Re de \Re f he \boxtimes hat e \Re , a icitate i e \boxtimes ec, he e \Re f i a di ide d \boxtimes b \boxtimes e i dec a ed.

The Ci_{i} a Δha_{i} a cei_{i} is age fi_{i} had de Δi_{i} fi $d \in \Delta ea \Delta_{i}$ i Δei_{i} and Δi_{i} and $\Delta i_$

The ecci i g age a \sqrt{M} ed b he CM_{ra} Δha $ecci, he e i e c <math>\nabla M$ he $a \Delta M$ f he ace ΔM f he ace

The ecci i g age a M_1 ed b he CM_2 a M_1 e $\Delta a \Delta a$ a eM a eM de M_1 de ΔM_1 i $\Delta e M_1$ eig $\Delta a e \Delta a$ i $\Delta e M_2$ i $\Delta e M_2$ a egi $\Delta e e d a \Delta a$ de he T i $\Delta e e O$ di a ce M_1 H M_1 g K M_2 g.

U de he, e_ike i , \square a , \square e, e. a , PRC, a \square a d eg , a in \square , he $Cn_{-1}a$ __en e e ci \square e he igh, \square for fei, c, ai_ed di. ide d \square b , ha, \square e \square ha, \square be e e ci \square ed i , i, af e , he e , i a in \square \square fr he a , icable , i _i _i _a , in \square , he dec, a a in \square for di. ide d di \square ib , in \square .

Whe e $M \ge e$ is also b the CM_{ra} is cease so diginited in a star b from it is child a star be the case of th

Where $M \ge i \boxtimes$ ake b, he $CM_{-n}a$, $a \boxtimes \boxtimes i$ h, $M \ge _ea \boxtimes de e _i = ed b$, he $Ma d M f di ec M \boxtimes M \boxtimes e_{-}$ he $M e \boxtimes a \boxtimes [i \boxtimes ed f M] eig \boxtimes ha e \boxtimes M f a \boxtimes ha eh M de \boxtimes h M i \boxtimes _a ceable i \boxtimes i_{-} M be e e ci \boxtimes d_{-} e \boxtimes M f a \boxtimes ha eh M de \boxtimes h M i \boxtimes _a ceable i_{-} M be e e ci \boxtimes d_{-} e \boxtimes M f a \boxtimes ha eh M de \boxtimes h M i \boxtimes _a ceable i_{-} M be e e ci \boxtimes d_{-} e \boxtimes M f a \boxtimes ha eh M de \boxtimes h M a eh M a eh M de \boxtimes h M a eh M a$

- (1) di ide d $\boxtimes M$, he e a ed Sha e \boxtimes ha e bee de i e ed a e $\boxtimes \Im$ i i $\boxtimes \boxtimes \Im$ i hi 12 ea \boxtimes a d ha e M bee c ai ed; a d
- (2) he Chi_pa , ace ad e i⊠e_e ⊠i ki e ki _ki e e⊠a a e ⊠kif he Chi_pa , i⊠i g kica iki af e he 12 ea ⊠ha e e a ⊠ed, ⊠a i g i ⊠i e iki ki ⊠i e iki ki be Sha e⊠a d i fki _ing he S kick E cha ge kif ⊠ ch i e iki .

The CM_ra $[X_1, g]$, g], ef, cH [20] de a iH, H he is $e \boxtimes \boxtimes H$ [20] a eH [20] a eH [20] eH eH [2

The $CN_{ra} = \Delta ha_{c} e_{ra}N$ and developed of a constraint of $rac{1}{ra}$ is $CN_{ra} = \Delta ha_{c} e_{ra}$. The $CN_{ra} = \Delta ha_{c} e_{ra}$ is $\Delta ha_{c} e_{ra}$, $\Delta ha_{c} e_{ra}$,

If he $CM_{a} = 2MeX[ab,iMh_e]$, __ee, i g dMeX M e e ciXe i X MX e i de he, ecedi g, a ag a, h, he bMa d Mf di ec, MX[aba], e e ciXe X ch, MX e .

The $e_{\mathcal{A}} = \frac{1}{2} \sqrt{3} = \frac{1}$

A accility is find the contract of the contract of the finding is
$$M_{\rm e}$$
 is given by the contract of the finding is $M_{\rm e}$ is given by the contract of the finding is a second se

- 1. he igh Mf acce 2020 a a i _e, M, he acc M b MM k 2, ec M d 20 M che 20 Mf, he C M _ m a d, he igh M e i e e a d he igh a d e i m _ en age _e , Mf, he C M _ m a d e, a a i M 2 e i M _ en i M e i M _ en i M a d e , a a i M 2 e
- 2. he igh \sqrt{n} e i e he $C\sqrt{n}$ a \sqrt{n} ake a eal \sqrt{n} ab e eal \sqrt{n} \sqrt{n} b ai f \sqrt{n} a b a b a dia i e he i f \sqrt{n} a de , a a i \sqrt{n} a cecha f \sqrt{n} he acc \sqrt{n} i g fi \sqrt{n} e f \sqrt{n} e f \sqrt{n} d i e a
- 3. , he igh, $\sqrt[4]{n}$ a, e d ge e a __ee i g , ecei e a $\sqrt[4]{n}$ ice $\sqrt[4]{n}$ $\sqrt[4]{n}$ if $\sqrt[4]{n}$ if $\sqrt[4]{n}$ is a __ee i g A hich $\sum_{n=1}^{\infty} \sqrt{n}$ be head a ge e a __ee i g $\sqrt[4]{n}$ a __en e A hich e a e , $\sqrt[4]{n}$ i a , he acc $\sqrt[4]{n}$ i g fi __m f, he C $\sqrt[4]{n}$ a .

If he $M \boxtimes i M$ if acc M i g fi___bec M_e \boxtimes aca , he bind d M f diec $M \boxtimes _a_1$ a M a acc M i g fi___n M fi \boxtimes ch. aca c bef M e age e a __ee i g i \boxtimes he d. HM e e , if he e a e M he acc M i g fi $__M$ h M di g he M if M f acc M i g fi $__M$ f he CM_r a \boxtimes hi e \boxtimes ch. aca c \boxtimes i e i \boxtimes \boxtimes ch acc M i g fi $__M$ \boxtimes ha cor M i g fi $__M$ \boxtimes he CM i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M he M acc M i g fi $__M$ \boxtimes he M he M acc M i g fi $__M$ \boxtimes he M he M acc M i g fi $__M$ \boxtimes he M he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M i g fi $__M$ \boxtimes he M acc M acc M i g fi $__M$ \boxtimes he M acc M acc M i g fi $__M$ \boxtimes he M acc M acc

The hi i g M he accM i g fi _____ he CM _____ he CM _____ he de e _____ i ed b he ge e a _____ ee i g. The bM a d M f di ec M M ca M hi e a accM i g fi _____ he fM e he deciM M b he ge e a _____ ee i g.

The ge e a __ee i g __en , b __ea $\boxtimes M$ f a M di a $e \boxtimes M$, M, $di \boxtimes M$ a a c c M i g fi ____ M M he e i a M M i $\boxtimes e __M M e_{__{n}} M$ __en , $M \boxtimes i$ h $\boxtimes a$ di g a hi g i he c M ac be $\boxtimes ee$ he accM i g fi ____ a a d he C M____ ra , b $\boxtimes i$ hM ej dice $M \boxtimes ch$ accM i g fi ____ M igh, if a , $M \subset ai__{n} da__{n} ge \boxtimes f M$ _____ he C M____ ra i e $\boxtimes ec$ $M f \boxtimes ch di \boxtimes M$.

The e_{1} e a_{1} M a accM i g fi $_{1}e_{-f_{1}}M$ e d he bM a dM f di $ec_{1}M \boxtimes M$ he $\boxtimes a_{1}M \boxtimes e_{1}$ he e_{-m} e $a_{1}M$ $\boxtimes ha_{-}$ be $de_{-e_{-i}}h$ e d he bM a dM f di $ec_{1}M \boxtimes$

The e_{1} , M_{1} , e_{1} , $di \boxtimes_{i} M_{2}$ is find the fixed of the e $\boxtimes_{i} M_{1}$ he e_{1} , M_{1} and M_{1} is M_{1} , M_{2} is M_{1} .

Where he CM_{-} ha $i\boxtimes i$ e ded M_{-} $a\boxtimes a$ a $e\boxtimes M_{-}$ iM_{-} a ge e a __ee i g M_{-} a M_{-} i a M_{-} i o __be acc M_{-} i g fi __r M_{-} fi, a ... aca c M_{-} he $M\boxtimes_{-}$ M_{-} he acc M_{-} i g fi __r M_{-} $M_{$

- (1) Beford e he ge e a __ee i g \mathcal{R} ice, he \mathcal{R} \mathcal{R} he a \mathcal{R} __en \mathcal{R} di \mathbb{Z}_{i} \mathcal{R} ha be de i e ed \mathcal{R} he acc \mathcal{R} i g fi __r \mathcal{R} be a \mathcal{R} ed \mathcal{R} \mathcal{R} ea e i \mathbb{Z} \mathcal{R} fiftice \mathcal{R} a ead e i e d i he e e a fi \mathbb{Z} ca ea . Lea e he ei \mathbb{Z} ha, i c, de di \mathbb{Z}_{i} \mathcal{R} a \mathbb{Z}_{i} a d e i e __e fi \mathcal{R} a acc \mathcal{R} i g fi __r
- (2) If he acchi i g fi _____ i ea e i \boxtimes if fice __eke \boxtimes a \boxtimes a e__e, i \boxtimes i i g a d e i e \boxtimes he \boxtimes a e__e, i be i fi ____ed i \boxtimes ha e hi de \boxtimes b he Ci ____pa , e \boxtimes be i g i i g a d e i e \boxtimes he ecei, if \boxtimes ch \boxtimes a e__e, i i he \boxtimes i i e he Ci ___pa \boxtimes ha, ake he fi \boxtimes i g __ea \boxtimes e \boxtimes
 - 1. Maki g i \boxtimes i c $i \Re \boxtimes \Re$ he \Re ice \Re he e $\boxtimes \Re$ ha he ea i g acc \Re i g fi ____ha \boxtimes ___ade \boxtimes ch a \boxtimes a e___er, ; a d
 - 2. Civite $\boxtimes Mf \boxtimes Ch a \boxtimes a \in A_{n}$ a $\boxtimes he a \in M_{n}$ he M_{n} ice $\boxtimes ha_{n}$ be $\boxtimes e = M \boxtimes ha e h M de \boxtimes \boxtimes h$ he $_ea \boxtimes \boxtimes e = M_{n}$ hi A_{n} ice $\boxtimes Mf A \boxtimes M$ ciaim M.
- (3) P \overline{N} ided he $C\overline{N}_{pa}$ fai ed \overline{N} de i e \overline{N} ch \overline{N} a e_e, b he e e a acc \overline{N} i g i acc \overline{N} da ce \overline{N} i he \overline{N} i \overline{M} \overline{N} i a ag a h (2) \overline{M} hi \overline{N} a ic, e, he acc \overline{N} i g fi __e \overline{N} ce ed __e e i e he \overline{N} a e_e, \overline{N} be ead \overline{N} a he ge e a __ee i g a d __e ke fi he $C\overline{N}_{pa}$ ai \overline{N}

(4) The acc
$$\mathcal{M}$$
 i g fi \mathcal{M} ease i \mathbb{M} ease i $\mathbb{M$

3. he ge e a __ee i g
$$cN$$
 e ed fN i \square i i i a i e \square g a iN .

The acc \mathcal{M} i g fi ____ \mathcal{M} ea e i \mathbb{N} e i ed \mathcal{M} ecci e a \mathcal{M} fice \mathbb{N} \mathcal{M} he i f \mathcal{M} _ an i \mathcal{M} e a ed \mathcal{M} he ab \mathcal{M} e ____ec i g \mathbb{N} a d \mathcal{M} eak a he af \mathcal{M} e ____ i g fi ____ a e \mathbb{N} e a ed \mathcal{M} i a \mathbb{N} he f \mathcal{M} ____ c a cc \mathcal{M} i g fi ____ \mathcal{M} fi he C \mathcal{M} ____ r a .

Where he CM_{ra} e in a e M decide M M cM i e M a M a accM i g fi i M a M i he accM i g fi i M a M i he accM i g fi i M a accM i M a accM i g fi i M a accM i M a accM a accM i g fi i M a accM a accM i g fi i M a accM a accM i g fi i M a accM a acc

- (1) The acchi i g fi ______m e [2] g f $\overline{N}_{_{_{c}}}$ i [2] $\overline{M}_{_{c}}$ i [2] $\overline{M}_{_{c}}$ i [2] $\overline{M}_{_{c}}$ i [2] $\overline{M}_{_{c}}$ i [3] \overline{M}_{c} i [3] $\overline{$
 - 1. ha i \boxtimes e \boxtimes g a i \Re d \Re e \boxtimes \Re i \Re e a a \Re ce_e, \Re \boxtimes ha e h \Re d e \boxtimes \Re c e d i \Re \boxtimes \Re f he $C \Re_{-n}$ a ; \Re

2. a
$$M$$
 he \square ch ci $\circ _$ \square a ce \square ha \square ha \square be, e \square ed.

- (2) Wi hi 14 da \boxtimes_{1} , \bigotimes_{1} he ecei, \bigotimes_{1} \boxtimes_{1} ch \bigotimes_{1} ice \bigotimes_{1} i ga \boxtimes efe ed i , a ag a h (1) \bigotimes_{1} hi \boxtimes a ice, he \bigotimes_{1} ra \boxtimes ha, de i e a \bigotimes_{1} , \bigotimes_{1} \bigotimes_{1} he \bigotimes_{1} ice \bigotimes_{1} re e , a hi \bigotimes_{1} i e \boxtimes P \bigotimes_{1} ided ha he \bigotimes_{1} ice cive ai \boxtimes_{1} \boxtimes_{1} a da ab \bigotimes_{1} e __e, in ed i , a ag a h (1) 2., he \bigotimes_{1} ra \boxtimes ha, e a e a d , ace cive is \bigotimes_{1} i \boxtimes_{1} and \bigotimes_{1} e __e, a he cive ra five i \boxtimes_{1} a da a e hive i \boxtimes_{1} a da a e __e a e a d , ace cive i i \boxtimes_{1} i \boxtimes_{1} ch \boxtimes_{1} e __e, a he cive ra five i \boxtimes_{1} e cive \boxtimes_{1} i \boxtimes_{1} a ehve de \boxtimes_{1} The Cive ra \boxtimes ha, a \boxtimes_{1} de i e cive i i i \boxtimes_{1} i i for egvine g \boxtimes_{1} e __e, \bigotimes_{1} \boxtimes_{1} he \bigotimes_{1} i \boxtimes_{1} e ach \bigotimes_{1} e \boxtimes_{2} a da a de i e de \boxtimes_{1} i de de \boxtimes_{2} egi e ed i he \boxtimes_{1} a ehve de \boxtimes_{2} egi \boxtimes_{2} e, \bigotimes_{1} \bigotimes_{1} a he cive ra \boxtimes_{1} e \boxtimes_{2} even i i de de \boxtimes_{2} egi \boxtimes_{2} e d i i g , i e \boxtimes_{1} he \bigotimes_{1} a he cive ra \boxtimes_{1} e \boxtimes_{2} even i i de i g a , i cab e a \boxtimes_{2} eg , a i i \boxtimes_{2} a d , i \boxtimes_{1} i g , ace \bigotimes_{1} for e Cive ra \boxtimes_{2} where \boxtimes_{2} is de \boxtimes_{2} even i i de i g e ecified b he E cha ge \bigotimes_{1} for e i \boxtimes_{1} e , a \bigotimes_{2} i i de a ed

•

The __enge 17 di i 2017 iff he Ch __ra Δ ha _ e i i e he e a a iff iff a iff inda b he bita d iff di ec if Δ Af e Δ ch iff inda had bee ad if ed i accif da ce Δ i h he iff ced ed Δ ecified i he A ic ed iff A dot if if iff he Ch __ra , e.e. a e a __n a iff a d a iff a iff ced ed Δ ha be ca ied iff a ccif di g iff a Δ Sha ehift de Δ ha iff iff a d a iff a d a iff a iff id ch iff iff he Ch __ra Δ ha e he igh iff e i e he Ch __ra iff Δ a e i fa iff iff ch i i i i i i i i i i i chade hei Δ ha e i a e i fa iff i fa ch i i i i i chade hei Δ ha e i a e i fa iff i fa ch i i i i chade hei Δ ha e i a e i fa iff i fa ch i i chade hei i cha e a a fai i ce. The chi e Δ iff e Δ iff e Δ i i g he __enge iff di i i i i i i fa he Ch __ra Δ ha be ch __ried i a Δ ecia diff __en i fa i Δ iff e Δ iff e Δ i i g he __enge iff di i i i i i i i fa he Ch __ra Δ ha be ch __ried i a Δ ecia diff __en i i i e e ciff i b i a ehift de Δ

 $H_{\mathcal{H}} de \boxtimes \mathcal{H} f \mathcal{H} e \boxtimes a \boxtimes [i \boxtimes] ed \boxtimes ha e \boxtimes \mathcal{H} f c \mathcal{H}_{\mathcal{H}} a e [i \boxtimes] ha a e [i \boxtimes] ed i H_{\mathcal{H}} g \mathcal{K} \mathcal{H} g \mathcal{H} \mathcal{H} he [e i \mathcal{H} ie \boxtimes \boxtimes ha] b e \boxtimes e e d c \mathcal{H} ie \boxtimes \mathcal{H} f he a b \mathcal{H} e - c h [i \mathcal{H} e d \mathcal{H} a - c h] b [h \mathcal{H}].$

The sign of a contract of the second back of the second back of the second back of the second secon

I he calle \widehat{M} f a __enge, he extended a contract X a able a d ecci. able \widehat{M}_{i} be i he i ed b, he c \widehat{M}_{i} i i g c \widehat{M}_{i} rate \widehat{M}_{i} ed c $\widehat{M}_{$

 $A \boxtimes f \Re \ he \boxtimes (i, 1), \ \Re f a c \Re_{-i} a \ , \ he \ \Re f e \ ie \boxtimes he e \Re f \boxtimes ha \ be \ di \ ided \ acc \Re \ di \ g \ .$

Ba a ce $\Delta hee \Delta a$ d check $i \Delta \Delta M$, $M e i e \Delta M$, $he CM_{ra} \Delta ha$, $b e \Delta M$ ked M. The cM_{ra} i e \Delta i e M a i e ΔM and M if the c edi $M \Delta a$ conditions of the CM_{ra} a La Δ , a d A and a d A and a d A and A a e ΔM a e

Deb $\boxtimes M \boxtimes$ ed b he CM_{a} i M i he di i $\boxtimes M$ $\boxtimes ha$ be a \boxtimes _ed b he cM_{a} a i e $\boxtimes i$ e i $\boxtimes e$ ce af e he di i $\boxtimes M$ i accM da ce $\boxtimes i$ h he ag ee_e e eached.

0

The CM_{a} a Ma_{a} be divergence of the di

(1) A
$$\Re f_{i}he = \Re f_{i} R di M R_{i} i R a M i i a ed i hi A i c e R R A M R i a ea R i e$$

- (2) The ge e a ee_i g decide a_i g diverge e i;
- (3) I in ece Δa is be di Δa , ed die A for a is in the CM for a;
- (4) The $CM_{-1}a$ index a ed back $i_{1,1}$ acc M di $g_{1,1}M$ he $a \boxtimes fM$ bei $g_{1,1}$ able M, $a = i_{1} \boxtimes d_{1} e deb_{1} \boxtimes d_{2}$
- (5) I to b to example a centre of n i in n de ed n c mode different n be divergent ed accir di g n he at ;
- (6) The CN_{\perp} a halo g ea diffiq i exact if n = a in n = a age_e a d ca if be Nn ed b a if he _ea Nn ha he i e examine the land entries of Nn be Nn he i exact if i exact in exact in the Nn a chird to Nn hird d e e ce N = Nn entries if i g igh Nn fa, he Nn a chird de Nn he Cn_{\perp} ha _m , ead he Pein e' N chird Nn diverse in the Cir_ma .

Where he $CN_{1,2}a = i\boxtimes di \boxtimes N_{1,2}ed accN di g N he N i \boxtimes N \boxtimes N f A ice 225 (1), (2), (5) N (6) N f hi \boxtimes A ice N N f A \overline{D} N f A \overline{D} N f A \overline{D} N f a (1) i da iN g N ha be N e d overline d overline for e ce N f he ca \overline{D} N f di \overline{D} N f a (1) i da iN g N ha be N e d overline d overline for e ce N f he ca \overline{D} N f a \overline{D} N f a (1) i da iN g N ha be N e d overline for e ce N f he ca \overline{D} N f a (1) i da iN g N ha be N e d overline for e ce N f he ca \overline{D} N f a (1) i da iN g N he e N (1) i da iN g N he e n is the direct N \overline{D} N f a (1) i da iN g N he e n (1) i da iN g N he e$

Where he CM_{-1} a $i\boxtimes di \boxtimes M_{-1}$ ed accM directed in M_{-1} is M_{-1} is M_{-1} in M_{-1} in M_{-1} is M_{-1} in M_{-

If he bina d inf di ec in \boxtimes decide \boxtimes ha, he \bigcirc \square_{i} a \boxtimes ha, be initial inf and a e \boxtimes in \bigwedge for \square_{i} a ' \boxtimes decide \boxtimes ha, he \bigcirc \square_{i} a \boxtimes ha \boxtimes ha e hind de \boxtimes ge e a $_$ ee i g \bigcirc \square_{i} e ed fin \boxtimes chains a final defined a information of the end of the end

The first in a difference of the bar difference of the bar difference of the bar difference of the bar of the bar difference of the bar of the

The i_1 ida i_1 c_1 c_2 c_1 c_2 c_2 c_3 a_4 c_1 a_1 a_2 c_3 a_4 c_4 a_4 a_4 c_4 a_4 $a_$

The $i_1 i_1 i_2 i_3 i_4 i_5 c_{1_1} i_1 ee \boxtimes ha_1, \boxtimes i_1 hi$ $e da \boxtimes a \boxtimes M i_2 i_4 i_5 J_a i_6 J_b i_5 he cedi M \boxtimes a d \boxtimes ha_1, \boxtimes i_1 hi$ $60 da \boxtimes __ake a_1 b_ic a_M ce_e_i M e \boxtimes a e \boxtimes ecM g i ed b_he E cha ge fM he i i g M i tha e \boxtimes M i_b he CM __ra . Cedi M \boxtimes ha_1, \boxtimes i_h hi da \boxtimes a \boxtimes M i_b ecei M he M ice M \boxtimes i_h i 45 da \boxtimes a \boxtimes M i_b he i_b ica M ce_e_i i_he ca M fai i g M ecei i g_he M ice, dec a e cedi \boxtimes a gai \boxtimes he _i i_d a i M cM __ra e.$

 $TM \operatorname{dec}_a e c \operatorname{edi}_{\boxtimes} a c \operatorname{edi}_{M} \boxtimes \operatorname{ha}_{\setminus} e , ai \quad \operatorname{he} e e a \quad \operatorname{e}_{\operatorname{a}}_{\operatorname{e}} e \boxtimes a d , M \operatorname{ide} e e a \quad e \operatorname{ide}_{\operatorname{ia}}_{\operatorname{e}} e \operatorname{ia}_{\boxtimes} \boxtimes \operatorname{The}_{\setminus i} i \operatorname{ida}_{\operatorname{i}}_{M} cM \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}} e \boxtimes \operatorname{ad}_{\operatorname{e}} e \operatorname{edi}_{\operatorname{i}} \boxtimes \operatorname{the}_{\operatorname{e}} e \operatorname{edi}_{\operatorname{i}} \boxtimes \operatorname{edi}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}}_{\operatorname{e}} e \otimes \operatorname{edi}_{\operatorname{e}}$

The i i ida i \mathcal{A} c $\mathcal{A}_{\mathcal{A}}$ i g he e i \mathcal{A} d i g he e i \mathcal{A} d \mathcal{A} f c edi d c a a i \mathcal{A} .

The j i ida is
$$c_{1}$$
 is e e e cided he for m_{1} is for c_{1} is doing he for m_{2} is for c_{1} is doing he for m_{2} is a large for m_{1} is a large for m_{2} is a large for m_{2} is a large for m_{2} is a large for m_{2} is a l

- (1) $(i + ida_i + g_i) = (ie \boxtimes M f_i) + CM_{i} = (ie$
- (2) i $f \mathcal{M}_{-in} g c edi \mathcal{M} \boxtimes b$ $\mathcal{M}_{i} i c e \mathcal{M}_{-i} b i c a \mathcal{M} c e_{-i} e_{i};$
- (3) dia Ma g a d i i ida i g he b a e Me M he M_{-in} has have M_{-in} bee M_{-in} ed;
- (4) c ea i g $\Re f$ he \Re \Re a di g a e \Re a d he a e \Re i o ed i he $\Re ce \Re \Re f$ i ida i \Re ;
- (5) c ea i g $a d deb_{3} a d deb_{3} a$
- (6) $di \boxtimes i \boxtimes g_i he e \boxtimes i d_i a_i, \boxtimes e_i i e \boxtimes i a d_i$
- (7) , a ici a i g i he ci i i iga iM beha f M he CM pa .

The jii ida in Ch_{i} and ch_{i} and c

The exide a axis A has exact fraction in grading to the first indication of the existing of the exact in the exact of the existing of the existing of the existing of the existing of the exact of the existing of t

D i g he e ind inf i i ida inf , he Chi a chi i e Q infe i Q, b a inform inform if a b Q e Main e a inf ha i Q inf inf , i i ida inf . Beth e he Q a, $e \in \mathbb{N}$ inferred and e Q ibed i he ecedi g a ic e, he Chi a Q if a Q i, if be di Q ib ed information and e Q

I calle $\Re f_{ij}$ i i da i $\Re I_{ij}$ $\Re I_{ij}$ di 2007, i $\Re I_{ij}$ i f, he ji i da i $\Re I_{ij}$ channe i Ricella ha, he is realised if the Chana i i da i g, he is realised if the Chana a d, e a i g baa ce la hee \boxtimes a d check i \boxtimes $\Re f_{ij}$ is realised in the state of the chana state of the c

O ce he Pell, e' \boxtimes ch de a e \boxtimes he ba k , c h f he Ch \square a , he j i ida in ch \square in ee \boxtimes ha, ha d h e he j i ida in \square e \boxtimes h Pell, e' \boxtimes ch \square .

FN NX i g he ch_re in Mf i ida in , he i ida in ch_rin ee Xha, fn _rae a i ida in e M , a e e e a de e di e X a e_e, a d fi a cia acch X i eX ec Mf he i ida in e ind a d, af e e ifica in he emf b a CPA i Chi a, X b_i, he Xa_e, M he Xha ehn de X ge e a _ee i g M he Pen e'X ch fi ch fi _ein A d X i hi 30 da X f M_rhe da e Mf he Xha ehn de X ge e a _ee i g'X he Pen e'X ch i 'X ch fi _ein A . A d X i hi 30 da X f M_rhe af e e i in ed X a e X he Ch_ra egiX a in a hh i Ma, fi ch_ra de egiX a in , a d a fi ce he Ch_ra 'X e _na in .

 $The _e_be \boxtimes M f he (j + ida iM cM___) e \boxtimes ha (de M e he__ M e he__ M e he__ M he i d ie \boxtimes a d f (f) he M b iga iM \boxtimes M f (j + ida iM a ccM di g M he (a).$

Where a Mf he <u>i</u> ida M ch<u>i</u> eca $\Delta e \Delta a$ $M\Delta A$ he M a cedi M b i e M g $M\Delta A$ eg. ige ce, he Δha <u>cedi</u> M di g $M\Delta A$ equivalence M a cedi M b i e M g $M\Delta A$ eg. ige ce, he Δha <u>cedi</u> M di g M di

0

- I a $\sqrt{n} \in \sqrt{n}$ he \sqrt{n} is g ci o A a cell, he $C\sqrt{n}$ a A a cell A is elliptical in the second second
- (1) Af $e a_e d_e$, δf he $C \delta f_e$ a La $\boxtimes \delta f$ e $e a_a \boxtimes \delta f$ ad $in i\boxtimes a$, $i e e g_a i\delta f \boxtimes b$, he δf $e \boxtimes \delta f$ he A is $e \boxtimes \delta f$ A $\boxtimes \delta f$ contains f of f is $\bigotimes \delta f$ he $a \boxtimes \delta f$ ad $i = e g_a i\delta f \boxtimes \delta f$.

- (2) The ci α A a cell M he CM has a charged M has he are different finder of M e M he he are different finder of M e M he he charged M he he has a constraint of the charged M he he has a constraint of the charged M has a constraint of the cha
- (3) The Δha eh ∂f de Δge e a <u>e</u> i g decide Δha he A ice ∂f A $\Delta d h$ d be a e d ded.

A_end_en \boxtimes M he A ic e \boxtimes M A \boxtimes M cia M a \boxtimes M de \boxtimes M a \boxtimes M de \boxtimes de \boxtimes M de \boxtimes M de \boxtimes M de \boxtimes de \boxtimes M de \boxtimes de \boxtimes M de \boxtimes de \boxtimes de \boxtimes de \boxtimes de M de \boxtimes de \boxtimes de de \boxtimes de M de \boxtimes de \boxtimes de \boxtimes de M de \boxtimes de \boxtimes de de \boxtimes de M de \boxtimes de \boxtimes de M de \boxtimes d

The bh/a d h/f di ec \sqrt{n} \boxtimes ha, a_e, d hi \boxtimes A ic e \boxtimes h/f A \boxtimes h/f cia in a conditioned in a condition of the \mathbb{N}_1 in \mathbb{N}_1 he \mathbb{N}_2 high a ch/d \mathbb{N}_2 d he \mathbb{N}_1 i in \boxtimes h/f he e.e. a ch/2 refer a h/f i .

 $N_{1}^{M} \bigotimes i h \boxtimes a di g he f_{1}^{M} eg_{1}^{M} g a ag a h, i he f_{1}^{M} \bigotimes i g ci o ____ \bigotimes a ce \boxtimes he \boxtimes ha eh_{1}^{M} de \boxtimes ge e a ___ee i g ___eh a \boxtimes \boxtimes a e \boxtimes n'_1 i n' A a h_{1}^{M} i e he b_{1}^{M} a d n' f di ec n' \boxtimes n' a ___eh d hi \boxtimes A __ic_e \boxtimes n' f A \boxtimes n' ci a i n' i i e \bigotimes i h he f_{1}^{M} \bigotimes i g , i ci e \boxtimes i$

(1)

- (4) \square bjec, \square he a \square , eg a \square \square a d \square i g i e \square \square f he , ace \square he e he \square \square a ' \square \square ha e \square a e \square i a e \square i
- (5) b , b, ic a \mathbf{M} ce_e,;
- (6) he, $e \boxtimes c$ ibed en $\boxtimes be \boxtimes e e$ he $C \square_{a}$ a d he eci ie \square_{a} he $c \square_{a}$ fi ed en $\boxtimes b$ \boxtimes ch eci ie ;
- (7) M he let Δa , M ed b he e.e. a eg a, M age c M he $i \Delta i g$, a ce M $a \Delta \Delta e$, M i $hi \Delta A$, $i c e \Delta M$ A $i c e \Delta M$ i $A \Delta \Delta A$, $i c e \Delta M$

Where he CM_{a} a iMM e M ice b, i b, ic a M ce_e, a, e, e, a, e, e, a, e, e, M a be dee_ed, M have ecci, ed M ch M ice M ce, he, i b, ic a M ce_e, had bee __ede.

U (eXX) he cN' e N' he X i X e i i eX a N' ce_{-ei} - efe ed N' i hiX A (c,eX) if AXX cia iN' Xha_{-} efe N' (i) if iXX ed N' dN' eX ic Xha eh N' de XN' Xia in N' he Xh' Xha he N' Xh

U $(e \boxtimes M)$ he $\boxtimes i \boxtimes e$, M ided i M he a $(c \in \boxtimes M)$ hi $\boxtimes A$ $(c \in \boxtimes M)$ A $\boxtimes M$ cia M, he M ice $e \boxtimes \boxtimes \boxtimes \boxtimes E$, M i he abM e A $(c \in 239 _m)$ a $\boxtimes M$ be a $(c \otimes M)$ M ice $\boxtimes M$ \boxtimes ha ehM de \boxtimes ge e a $_ee$ i g, $_ee$ i g $\boxtimes M$ bM a dM die c $M \boxtimes M$ he \boxtimes e $(i \boxtimes M)$ c M $(i \boxtimes$

If he \Re ice $i\boxtimes \boxtimes e$ ed b had, he da e $\Re f \boxtimes e$ ice $i\boxtimes$ he da e $\Re f$ ack $\Re \boxtimes edge_e$, $\Re f$ ecci, b $\boxtimes g$ are \Re affied $\boxtimes e$ if he $\boxtimes e$ ice e, $\boxtimes i$. If he \Re ice $i\boxtimes \boxtimes e$ b $\Re \boxtimes$, he da e $\Re f \boxtimes e$ ice $i\boxtimes$ he fif h $\boxtimes \Re$ ki g da $\boxtimes f \Re_{-}$ he da e $\Re f$ de i.e. a he $\Re \boxtimes \Re$ iffice. If he \Re ice $i\boxtimes_{-}$ ade i a fac \boxtimes_{-} i.e. e_{-} at $\Re \boxtimes e \otimes \Re$ is e \Re if he e.e. \Re is $e \otimes \Re$ if $\Re e$ i.e. \Re he da e $\Re f \boxtimes e$ i.e. $\Re f \boxtimes f$ i.e. $\Re f \boxtimes f$ i.e. $\Re f \boxtimes f$ i.e. $\Re f$

Where e.e. $a_{1} \in \mathcal{N}$, $\mathcal{N} = e d\mathcal{N}_{0} _e_{1}, \underline{\mathbb{A}} _e_{1} = \underline{\mathbb{A}}$ be i the E gitting a gage a distance \mathcal{L}_{p} and \mathbf{A} is a chieffield of the state \mathbf{A} and \mathbf{A}

The Ci^{\prime}_{μ} a Δha_{μ} ci^{\prime}_{μ} Δh h he fi^{\prime}_{μ} i^{\prime}_{μ} g ι $e\Delta i$ Δe_{μ} i g di $\Delta \iota$ $e\Delta e$

(1) Where $e = a = di \boxtimes_{1} e \boxtimes_{1} c_{ai} \boxtimes_{2} a i \boxtimes_{2} f \boxtimes_{1} hi \boxtimes_{1} A_{ic} e \boxtimes_{1} f A \boxtimes_{2} hcia i \Im_{1} \Im_{1} a_{ic} i h \boxtimes_{1} \Im_{2} hcia i \Im_{1} \boxtimes_{2} f G_{ic} i \Im_{1} \boxtimes_{2} hcia i \Im_{1} \oplus_{2} hcia i \Im_{1} \boxtimes_{2} hcia i \Im_{1} \boxtimes_{2} hcia i \Im_{1} \boxtimes_{2} hcia i \Im_{1} \otimes_{2} hcia i \Im_{1} \otimes_{2} hcia i \Im_{1} \otimes_{2} hcia i \Im_{2} hcia i \Im_{2$

- (2) A act a ch $M_{c}e ea$ a e M, hh gh M a a ha ehh de, h, h M gh i $e = e_{1}$, e, a ih M hi, a ge e_{1} , M he a ge e_{1} , ca act a, ch M he act i i e = M he Ch_{c} ;
- (3) ANNA ficial edie (a) in the examination of the

I hild A ic el M f All Micia i M, he e A M el M ha -, M i hi -, M A e ha - a d e i M A - A ha i c de he gi e fig e, a d he e A A e ha ha f-, i de -, be M d-, e ceedi g-, be M A -, e A ha -, M A ha -, M A e ha - a d A e ha - A ha - A e ha -

 $The e_{nacchi} ig fi_{nacchi} e di hi a c e di fi A de fi hi a c e di fi A de fi a di fi - ... e di g a di fi - ... e di - ... e di - ... e$

Thi $\boxtimes A$, ic $e \boxtimes M$ A $\boxtimes M$ cia iM a e i Chi e $\boxtimes e$. If i, cM f, ic $\boxtimes \boxtimes i$ h a e $\boxtimes M$ i a M he to a grage, the Chi e $\boxtimes e$ to a block of $\boxtimes M$ hich $\boxtimes a \boxtimes M$ ece field a degite ed a Beiji g Ad_in i $\boxtimes A$ and fM I d $\boxtimes A$ a d CM_mence $\boxtimes M$ at the set of the se

 $The bills d inf di ec_{i} a \boxtimes h e C = a = i a$